1
|
Aljumaah MR, Roach J, Hu Y, Gunstad J, Azcarate-Peril MA. Microbial dipeptidyl peptidases of the S9B family as host-microbe isozymes. SCIENCE ADVANCES 2025; 11:eads5721. [PMID: 40173242 PMCID: PMC11964003 DOI: 10.1126/sciadv.ads5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Human dipeptidyl peptidase 4 (hDPP-4) has been a pharmacological target for metabolic diseases, particularly diabetes, since the early 2000s. As a ubiquitous enzyme found in both prokaryotic and eukaryotic organisms, hDPP-4 plays crucial roles in host homeostasis and disease progression. While many studies have explored hDPP-4's properties, research on gut microbially derived DPP-4 (mDPP-4) remains limited. This review discusses the significance of mDPP-4 and its health implications, analyzing crystal structures of mDPP-4 in comparison to human counterparts. We examine how hDPP-4 inhibitors could influence gut microbiome composition and mDPP-4 activity. Additionally, this review connects ongoing discussions regarding DPP-4 substrate specificity and potential access routes for mDPP-4, emphasizing the urgent need for further research on mDPP-4's role in health and improve the precision of DPP-4 inhibitor therapies.
Collapse
Affiliation(s)
- Mashael R. Aljumaah
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jeffery Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Yunan Hu
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Toker D, Chiang JN, Vespa PM, Schnakers C, Monti MM. The Dipeptidyl Peptidase-4 Inhibitor Saxagliptin as a Candidate Treatment for Disorders of Consciousness: A Deep Learning and Retrospective Clinical Analysis. Neurocrit Care 2025:10.1007/s12028-025-02217-0. [PMID: 39904872 DOI: 10.1007/s12028-025-02217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Despite advancements in the neuroscience of consciousness, no new medications for disorders of consciousness (DOC) have been discovered in more than a decade. Repurposing existing US Food and Drug Administration (FDA)-approved drugs for DOC is crucial for improving clinical management and patient outcomes. METHODS To identify potential new treatments among existing FDA-approved drugs, we used a deep learning-based drug screening model to predict the efficacy of drugs as awakening agents based on their three-dimensional molecular structure. A retrospective cohort study from March 2012 to October 2024 tested the model's predictions, focusing on changes in Glasgow Coma Scale (GCS) scores in 4047 patients in a coma from traumatic, vascular, or anoxic brain injury. RESULTS Our deep learning drug screens identified saxagliptin, a dipeptidyl peptidase-4 inhibitor, as a promising awakening drug for both acute and prolonged DOC. The retrospective clinical analysis showed that saxagliptin was associated with the highest recovery rate from acute coma among diabetes medications. After matching patients by age, sex, initial GCS score, coma etiology, and glycemic status, brain-injured patients with diabetes on incretin-based therapies, including dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 analogues, recovered from coma at significantly higher rates compared to both brain-injured patients with diabetes on non-incretin-based diabetes medications (95% confidence interval of 1.8-14.1% higher recovery rate, P = 0.0331) and brain-injured patients without diabetes (95% confidence interval of 2-21% higher recovery rate, P = 0.0272). Post matching, brain-injured patients with diabetes on incretin-based therapies also recovered at a significantly higher rate than patients treated with amantadine (95% confidence interval for the difference 2.4-25.1.0%, P = 0.0364). A review of preclinical studies identified several pathways through which saxagliptin and other incretin-based medications may aid awakening from both acute and chronic DOC: restoring monoaminergic and GABAergic neurotransmission, reducing brain inflammation and oxidative damage, clearing hyperphosphorylated tau and amyloid-β, normalizing thalamocortical glucose metabolism, increasing neural plasticity, and mitigating excitotoxic brain damage. CONCLUSIONS Our findings suggest incretin-based medications in general, and saxagliptin in particular, as potential novel therapeutic agents for DOC. Further prospective clinical trials are needed to confirm their efficacy and safety in DOC.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul M Vespa
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Sulangi AJ, Lyons SE, Abdou AA, Patel H, Nagliya D, Joseph E, Joseph C, Kumar D, Patel S, Jinwala I, Parmar MS. Exploring the Therapeutic Potential of DPP4 Inhibitors in Alzheimer's Disease: Molecular Insight and Clinical Outcome. Cureus 2024; 16:e72648. [PMID: 39610591 PMCID: PMC11604213 DOI: 10.7759/cureus.72648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles, and cognitive decline. Given the shared neuropathophysiological traits between AD and type 2 diabetes mellitus (T2DM), repurposing antidiabetic medications, such as dipeptidyl peptidase 4 inhibitors (DPP4i), has emerged as a promising therapeutic strategy. This review comprehensively evaluates the preclinical and clinical evidence supporting the potential of DPP4i in preventing or treating AD by modulating Aβ and tau pathology, improving cognitive function, reducing neuroinflammation and oxidative stress, and promoting neuronal survival. The beneficial effects of DPP4i are likely mediated through the modulation of insulin signaling, anti-inflammatory and antioxidant properties, glucagon-like peptide-1 (GLP-1) upregulation, and modulation of the amyloidogenic pathway. While further research is needed to establish their clinical efficacy in AD patients, DPP4i offers a promising avenue for therapeutic intervention for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Albert Joseph Sulangi
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Sarah E Lyons
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Amy A Abdou
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Hemangi Patel
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Deepika Nagliya
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Eileen Joseph
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Carmel Joseph
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Divya Kumar
- Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Shivani Patel
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Isha Jinwala
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Mayur S Parmar
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
4
|
Ebrahimi M, Dabbagh A, Madadi F. Propofol-induced hippocampal Neurotoxicity: A mitochondrial perspective. Brain Res 2024; 1831:148841. [PMID: 38428475 DOI: 10.1016/j.brainres.2024.148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Propofol is a frequently used anesthetic. It can induce neurodegeneration and inhibit neurogenesis in the hippocampus. This effect may be temporary. It can, however, become permanent in vulnerable populations, such as the elderly, who are more susceptible to Alzheimer's disease, and neonates and children, whose brains are still developing and require neurogenesis. Current clinical practice strategies have failed to provide an effective solution to this problem. In addition, the molecular mechanism of this toxicity is not fully understood. Recent advances in molecular research have revealed that apoptosis, in close association with mitochondria, is a crucial mechanism through which propofol contributes to hippocampal toxicity. Preventing the toxicity of propofol on the hippocampus has shown promise in in-vivo, in-vitro, and to a lesser extent human studies. This study seeks to provide a comprehensive literature review of the effects of propofol toxicity on the hippocampus via mitochondria and to suggest translational suggestions based on these molecular results.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Madadi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Imtiaz A, Shimonaka S, Uddin MN, Elahi M, Ishiguro K, Hasegawa M, Hattori N, Motoi Y. Selection of lansoprazole from an FDA-approved drug library to inhibit the Alzheimer's disease seed-dependent formation of tau aggregates. Front Aging Neurosci 2024; 16:1368291. [PMID: 38633982 PMCID: PMC11022852 DOI: 10.3389/fnagi.2024.1368291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
The efficacy of current treatments is still insufficient for Alzheimer's disease (AD), the most common cause of Dementia. Out of the two pathological hallmarks of AD amyloid-β plaques and neurofibrillary tangles, comprising of tau protein, tau pathology strongly correlates with the symptoms of AD. Previously, screening for inhibitors of tau aggregation that target recombinant tau aggregates have been attempted. Since a recent cryo-EM analysis revealed distinct differences in the folding patterns of heparin-induced recombinant tau filaments and AD tau filaments, this study focused on AD seed-dependent tau aggregation in drug repositioning for AD. We screened 763 compounds from an FDA-approved drug library using an AD seed-induced tau aggregation in SH-SY5Y cell-based assay. In the first screening, 180 compounds were selected, 72 of which were excluded based on the results of lactate dehydrogenase assay. In the third screening with evaluations of soluble and insoluble tau, 38 compounds were selected. In the fourth screening with 3 different AD seeds, 4 compounds, lansoprazole, calcipotriene, desogestrel, and pentamidine isethionate, were selected. After AD seed-induced real-time quaking-induced conversion, lansoprazole was selected as the most suitable drug for repositioning. The intranasal administration of lansoprazole for 4 months to AD seed-injected mice improved locomotor activity and reduced both the amount of insoluble tau and the extent of phosphorylated tau-positive areas. Alanine replacement of the predicted binding site to an AD filament indicated the involvement of Q351, H362, and K369 in lansoprazole and C-shaped tau filaments. These results suggest the potential of lansoprazole as a candidate for drug repositioning to an inhibitor of tau aggregate formation in AD.
Collapse
Affiliation(s)
- Ahmed Imtiaz
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Shimonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mohammad Nasir Uddin
- Department of Biochemistry & Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science & Technology University, Tangail, Bangladesh
| | - Montasir Elahi
- Center for Birth Defect Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Motoi
- Medical Center for Dementia, Juntendo University Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Meng J, Yan R, Zhang C, Bai X, Yang X, Yang Y, Feng T, Liu X. Dipeptidyl peptidase-4 inhibitors alleviate cognitive dysfunction in type 2 diabetes mellitus. Lipids Health Dis 2023; 22:219. [PMID: 38082288 PMCID: PMC10712048 DOI: 10.1186/s12944-023-01985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) are commonly at high risk for developing cognitive dysfunction. Antidiabetic agents might be repurposed for targeting cognitive dysfunction in addition to modulation on glucose homeostasis. This study aimed to evaluate the impact of dipeptidyl peptidase-4 inhibitors (DPP-4i) on cognitive function in T2DM. METHODS PubMed, Embase, Cochrane Library and Web of Science were systematically searched from inception to September 30, 2023. Weighted mean differences were calculated using the Mantel-Haenszel (M-H) fixed or random effects model based on the degree of heterogeneity among studies. Heterogeneity was evaluated using a Chi-squared test and quantified with Higgins I2. Sensitivity analysis was performed with the leave-one-out method, and publication bias was evaluated according to Begg's and Egger's tests. RESULTS Six clinical trials involving 5,178 participants were included in the pooled analysis. Administration of DPP-4i generally correlated with an increase of Mini-Mental State Examination (MMSE) scores (1.09, 95% CI: 0.22 to 1.96). DPP-4i alleviated cognitive impairment in the copying skill subdomain of MMSE (0.26, 95% CI: 0.12 to 0.40). Treatment with DPP-4i also resulted in an increase of Instrumental Activities of Daily Living (IADL) scores (0.82, 95% CI: 0.30 to 1.34). However, DPP-4i produced no significant effects on Barthel Activities of Daily Living (BADL) scores (0.37, 95% CI: -1.26 to 1.99) or other test scores. CONCLUSIONS DPP-4i treatment favourably improved cognitive function in patients with T2DM. Further trials with larger samples should be performed to confirm these estimates and investigate the association of different DPP-4i with cognitive function among diabetic patients. TRIAL REGISTRATION IN PROSPERO CRD42023430873.
Collapse
Affiliation(s)
- Jie Meng
- Department of Pathology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rui Yan
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Zhang
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyan Bai
- Department of Hemotology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingsheng Yang
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Yang
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xin Liu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Melloni E, Grassilli S, Romani A, Rimondi E, Marcuzzi A, Zauli E, Secchiero P, Paganetto G, Guerrini A, Sacchetti G, Tacchini M. Convolvulus pluricaulis Choisy’s Extraction, Chemical Characterization and Evaluation of the Potential Effects on Glycaemic Balance in a 3T3-L1 Adipocyte Cell Model. Nutrients 2023; 15:nu15071727. [PMID: 37049568 PMCID: PMC10097163 DOI: 10.3390/nu15071727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Convolvulus pluricaulis (CP) is a common Indian herb, largely employed in Ayurvedic medicine and known for its neuroprotective and neuroinflammatory action. Its effectiveness against several pathologic/sub-pathologic conditions is widely accepted, but it is not yet completely chemically characterized. In recent years, several researchers have pointed out the involvement of CP and other Convolvulaceae in lipidic and glucidic metabolism, particularly in the control of hyperlipidaemia and diabetic conditions. In this scenario, the aim of the study was to chemically characterize the medium polarity part of the CP whole plant and its fractions and to shed light on their biological activity in adipocyte differentiation using the 3T3-L1 cell model. Our results demonstrated that the CP extract and fractions could upregulate the adipocyte differentiation through the modulation of the nuclear receptor PPARγ (Peroxisome Proliferator-Activated Receptor γ), broadly recognized as a key regulator of adipocyte differentiation, and the glucose transporter GLUT-4, which is fundamental for cellular glucose uptake and for metabolism control. CP also showed the ability to exert an anti-inflammatory effect, downregulating cytokines such as Rantes, MCP-1, KC, eotaxin, and GM-CSF, which are deeply involved in insulin resistance and glucose intolerance. Taken together, these data suggest that CP could exert a potential beneficial effect on glycemia and could be employed as an anti-diabetic adjuvant or, in any case, a means to better control glucose homeostasis.
Collapse
Affiliation(s)
- Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
9
|
Li Z, Meng X, Ma G, Liu W, Li W, Cai Q, Wang S, Huang G, Zhang Y. Increasing brain glucose metabolism by ligustrazine piperazine ameliorates cognitive deficits through PPARγ-dependent enhancement of mitophagy in APP/PS1 mice. Alzheimers Res Ther 2022; 14:150. [PMID: 36217155 PMCID: PMC9552451 DOI: 10.1186/s13195-022-01092-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
PPARγ agonists have been proven to be neuroprotective in vitro and in vivo models of Alzheimer's disease (AD). In the present study, we identified ligustrazine piperazine derivative (LPD) as a novel PPARγ agonist, which was detected by a dual-luciferase reporter assay system. LPD treatment dose-dependently reduced Aβ40 and Aβ42 levels in PC12 cells stably transfected with APP695swe and PSEN1dE9. Intragastric administration of LPD for 3 months dose-dependently reversed cognitive deficits in APP/PS1 mice. LPD treatment substantially decreased hippocampal Aβ plaques in APP/PS1 mice and decreased the levels of Aβ40 and Aβ42 in vivo and in vitro. Moreover, LPD treatment induced mitophagy in vivo and in vitro and increased brain 18F-FDG uptake in APP/PS1 mice. LPD treatment significantly increased OCR, ATP production, maximal respiration, spare respiratory capacity, and basal respiration in APP/PS1 cells. Mechanistically, LPD treatment upregulated PPARγ, PINK1, and the phosphorylation of Parkin (Ser65) and increased the LC3-II/LC3-I ratio but decreased SQSTM1/p62 in vivo and in vitro. Importantly, all these protective effects mediated by LPD were abolished by cotreatment with the selective PPARγ antagonist GW9662. In summary, LPD could increase brain glucose metabolism and ameliorate cognitive deficits through PPARγ-dependent enhancement of mitophagy in APP/PS1 mice.
Collapse
Affiliation(s)
- Zongyang Li
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Xiangbao Meng
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China ,grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, No. 855 Xingye Avenue East, Panyu District, Guangzhou, 511486 China
| | - Guoxu Ma
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| | - Wenlan Liu
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Weiping Li
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Qian Cai
- grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, No. 855 Xingye Avenue East, Panyu District, Guangzhou, 511486 China
| | - Sicen Wang
- grid.43169.390000 0001 0599 1243School of Medicine, Xi’an Jiaotong University, No.76, Yanta Westroad, Xi’an, 710061 China
| | - Guodong Huang
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Yuan Zhang
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| |
Collapse
|
10
|
Deng C, Chen H, Meng Z, Meng S. Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 2022; 13:955618. [PMID: 36213283 PMCID: PMC9533021 DOI: 10.3389/fendo.2022.955618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of sporadic Alzheimer's disease (AD) is increasing in recent years. Studies have shown that in addition to some genetic abnormalities, the majority of AD patients has a history of long-term exposure to risk factors. Neuroendocrine related risk factors have been proved to be strongly associated with AD. Long-term hormone disorder can have a direct detrimental effect on the brain by producing an AD-like pathology and result in cognitive decline by impairing neuronal metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may regulate the complex process of endocrine disorders, and improve metabolic abnormalities, as well as the resulting neuroinflammation and oxidative damage through a variety of pathways. TCM has unique therapeutic advantages in treating early intervention of AD-related neuroendocrine disorders and preventing cognitive decline. This paper reviewed the relationship between neuroendocrine and AD as well as the related TCM treatment and its mechanism. The advantages of TCM intervention on endocrine disorders and some pending problems was also discussed, and new insights for TCM treatment of dementia in the future was provided.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|