1
|
Bao N, Chen Z, Li B, Yang H, Li X, Zhang Z. Study on the Mechanism of Formononetin Against Hepatocellular Carcinoma: Regulating Metabolic Pathways of Ferroptosis and Cell Cycle. Int J Mol Sci 2025; 26:2578. [PMID: 40141219 PMCID: PMC11942389 DOI: 10.3390/ijms26062578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Formononetin (FM), an isoflavone with a range of anti-cancer activities, has not been fully elucidated regarding its anti-hepatocellular carcinoma (HCC) mechanisms. Therefore, this study aims to explore the underlying mechanisms of FM using a comprehensive pharmacology model based on computational technologies and omics technology. A network pharmacology approach was applied to detect the components and targets. A mathematical formula was used to evaluate the network contribution index (CI). Bioinformatics analysis was used to analyze clinical data related to HCC targets corresponding to the core component, and molecular docking simulations were conducted to assess binding activity. The results showed that FM induces oxidative DNA damage through ROS generation and triggers G2/M phase cell cycle arrest via the Chk1/Cdc25C/CDK1/CCNB1 signaling pathway. Subsequently, UPLC-MS/MS was applied for the analysis of differential metabolites and the exploration of distinct metabolic pathways. FM limited the synthesis of glutathione, promoted lipid peroxidation, and facilitated the generation of divalent iron. Finally, a colony formation assay, Western blot, and molecular dynamics simulation methods were executed to further validate the metabolomic results. FM exhibited a strong binding affinity for glutathione peroxidase 4 (GPX4). In addition, FM induces ferroptosis by inhibiting the p53/xCT/GPX4 signaling pathway. In vivo, FM could inhibit tumor growth. Conclusions: FM could induce DNA damage leading to cell cycle arrest and may also induce ferroptosis by regulating glutathione metabolism, thereby intervening in the occurrence and development of HCC, making it a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Ning Bao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (N.B.); (B.L.); (H.Y.)
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Baohong Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (N.B.); (B.L.); (H.Y.)
| | - Haolin Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (N.B.); (B.L.); (H.Y.)
| | - Xiao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (N.B.); (B.L.); (H.Y.)
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (N.B.); (B.L.); (H.Y.)
| |
Collapse
|
2
|
Ren Y, Xiao K, Lu Y, Chen W, Li L, Zhao J. Deciphering the mechanism of Chaihu Shugan San in the treatment of nonalcoholic steatohepatitis using network pharmacology and molecular docking. J Pharm Pharmacol 2024; 76:1521-1533. [PMID: 39250725 DOI: 10.1093/jpp/rgae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES In China, there is a long history and rich clinical experience in treating nonalcoholic steatohepatitis (NASH) with traditional Chinese herbal medicines, including Chai Hu Shu Gan San. This study aims to investigate the potential regulatory effects of Chaihu Shugan San (CSS) on liver lipid metabolism and inflammatory damage in mice with experimental nonalcoholic steatohepatitis (NASH) induced by a choline-deficient high-fat diet (CDHFD). Utilizing network pharmacology, we systematically explore the mechanisms of action and therapeutic potential of CSS against NASH. METHODS Potential targets in CSS and targets for NASH were identified using online databases. Functional enrichment and protein-protein interaction analyses were conducted to identify hub-targeted genes and elucidate the underlying molecular mechanisms. The affinities of active compounds in CSS with hub-targeted genes were evaluated using molecular docking. Finally, hub-targeted genes were validated through real-time polymerase chain reaction, western blotting, and immunofluorescence in choline-deficient high-fat diet mice, both with and without CSS treatment. KEY FINDINGS CSS reduces serum ALT and AST levels in NASH mice(P < 0.05) and ameliorates ballooning degeneration in the livers of NASH mice, thereby lowering the NAS score(P < 0.05). Including naringenin, high-performance liquid chromatography/mass spectrometrys identified 12 chromatographic peaks. Based on network pharmacology analysis, CSS contains a total of 103 active compounds and 877 target genes. Transferase activity represents a potential mechanism for therapeutic intervention of CSS in NASH. The transcriptional levels and protein expression of the SIRT1 gene in NASH mice are significantly increased by CSS (P < 0.05). CONCLUSIONS Naringenin is probable active compound in CSS and SIRT1 is the hub gene by which CSS is involved in NASH treatment.
Collapse
Affiliation(s)
- Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kaihui Xiao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Metabolic Associated Fatty Liver Disease, Capital Medical University, Beijing 100050, China
| |
Collapse
|
3
|
Chang W, Shi J, Li L, Zhang P, Ren Y, Yan Y, Ge Y. Network pharmacology and molecular docking analysis predict the mechanisms of Huangbai liniment in treating oral lichen planus. Medicine (Baltimore) 2024; 103:e39352. [PMID: 39151530 PMCID: PMC11332744 DOI: 10.1097/md.0000000000039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
This study explored the mechanism of Huangbai liniment (HB) for the treatment of oral lichen planus (OLP) through network pharmacology and molecular docking techniques. The study identified HB' active ingredients, therapeutic targets for OLP, and associated signaling pathways. The chemical composition of HB was screened using the HERB database. The disease targets of OLP were obtained through the GeneCards and OMIM databases. A protein-protein interactions network was constructed with the String platform. Topological analysis was performed using Cytoscape software to identify core targets. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the Hiplot database, and the active ingredients and core targets were verified by molecular docking. Date analysis showed that the active composition of HB in the treatment of OLP were quercetin, wogonin, kaempferol, and luteolin. This survey identified 10 potential therapeutic targets, including TNF, CXCL8, IL-6, IL1B, PIK3R1, ESR1, JUN, AKT1, PIK3CA, and CTNNB1. Molecular docking revealed stable interactions between OLP' key targets and HB. These key targets were predominantly involved in the PI3K-Akt signaling pathway, AGE-RAGE signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway. HB plays a crucial role in the treatment of OLP, acting on multiple targets and pathways, particularly the PI3K-Akt signaling pathway. It regulated biological processes like the proliferation of epithelial cells and lymphocytes and mediates the expression of transcription factors, cytokines, and chemokines. Therefore, this study provides a theoretical basis for the clinical trial and application of HB in the therapy of OLP.
Collapse
Affiliation(s)
- Wei Chang
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Jing Shi
- Department of Stomatology, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Lingzhi Li
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Ping Zhang
- Department of Stomatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Yanrong Ren
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Yan Yan
- Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yana Ge
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| |
Collapse
|
4
|
Ye C, Zhang B, Tang Z, Zheng C, Wang Q, Tong X. Synergistic action of Hedyotis diffusa Willd and Andrographis paniculata in Nasopharyngeal Carcinoma: Downregulating AKT1 and upregulating VEGFA to curb tumorigenesis. Int Immunopharmacol 2024; 132:111866. [PMID: 38603854 DOI: 10.1016/j.intimp.2024.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE Nasopharyngeal carcinoma (NPC) remains a challenging cancer to treat. This study investigates the molecular mechanisms of Hedyotis diffusa Willd (HDW) combined with Andrographis paniculata (AP) in treating NPC. METHODS Key compounds and target genes in HDW and AP were analyzed using network pharmacology. Protein-protein interaction (PPI) networks were constructed with STRING and visualized using Cytoscape. MCODE identified critical clusters, while DAVID facilitated GO and KEGG analyses. In vivo and in vitro experiments evaluated HDW-AP effects on NPC, including tumor volume, weight, Ki-67 expression, cell apoptosis, migration, invasion, cell cycle distribution, and DNA damage. RESULTS The database identified 495 NPC-related genes and 26 compounds in the HDW-AP pair, targeting 165 genes. Fifty-eight potential therapeutic genes were found, leading to 18 key targets. KEGG analysis revealed a significant impact on 78 pathways, especially cancer pathways. Both in vivo and in vitro tests showed HDW-AP inhibited NPC cell proliferation, migration, invasion, and induced apoptosis. Mechanistically, this was achieved through AKT1 downregulation and VEGFA upregulation. CONCLUSION The combination of HDW and AP targets 16 key genes to impede the development of NPC, primarily by modulating AKT1 and VEGFA pathways.
Collapse
Affiliation(s)
- Chengyu Ye
- Department of Radiotherapy, Wenzhou Central Hospital & The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Baofan Zhang
- Second Department of Oncology, Wenzhou Central Hospital, Wenzhou 325000, PR China
| | - Zhongjie Tang
- Second Department of Oncology, Wenzhou Central Hospital, Wenzhou 325000, PR China
| | - Cuiping Zheng
- Department of Tumor Hematology, Wenzhou Central Hospital, Wenzhou 325000, PR China
| | - Qiongzhang Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xiangmin Tong
- Department of Hematology, the Affiliated Hangzhou First People's Hospital, westlake University School of Medicine, Hangzhou, 310006, P.R. China.
| |
Collapse
|
5
|
Qiu J, Xiao G, Yang M, Huang X, Cai D, Xie C, Chen Z, Bi X, Xu A. Integrated network pharmacology and metabolomics reveal the mechanisms of Jasminum elongatum in anti-ulcerative colitis. Sci Rep 2023; 13:22449. [PMID: 38105335 PMCID: PMC10725889 DOI: 10.1038/s41598-023-49792-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Jasminum elongatum (JE), an ethnic Chinese medicine, is widely used in the Lingnan region of China, because of its analgesic and antidiarrheal action, as well as its anti-inflammatory effects in gastrointestinal diseases. However, whether JE could against ulcerative colitis (UC) remains unclear. This research aims to reveal JE in treating UC and clarify the underlying mechanism. We used the 2.5% dextran sulfate sodium (DSS)-induced UC mice (C57BL/6J) to evaluate the therapeutic effects of JE. Metabolomics of serum and network pharmacology were combined to draw target-metabolite pathways. Apart from that, the targets of associated pathways were confirmed, and the mechanism of action was made clear, using immunohistochemistry. The pharmacodynamic results, including disease activity index (DAI), histological evaluation, and inflammatory cytokines in colon tissues, demonstrated that JE significantly relieved the physiological and pathological symptoms of UC. Network pharmacology analysis indicated 25 core targets, such as TNF, IL-6, PTGS2 and RELA, and four key pathways, including the NF-κB signaling pathway and arachidonic acid metabolism pathway, which were the key connections between JE and UC. Metabolomics analysis identified 45 endogenous differential metabolites and 9 metabolic pathways by enrichment, with the arachidonic acid metabolism pathway being the main metabolism pathway, consistent with the prediction of network pharmacology. IκB, p65 and COX-2 were identified as key targets and this study demonstrated for the first time that JE reverses 2.5% DSS-induced UC in mice via the IκB/p65/COX-2/arachidonic acid pathway. This study reveals the complex mechanisms underlying the therapeutic effects of JE on UC and provides a new approach to identifying the underlying mechanisms of the pharmacological action of Chinese natural medicines such as JE.
Collapse
Affiliation(s)
- Jinyan Qiu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guanlin Xiao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Minjuan Yang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejun Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Dake Cai
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Canhui Xie
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Chen
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Xiaoli Bi
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China.
| | - Aili Xu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, China.
| |
Collapse
|
6
|
Li L, Yang L, Yang L, He C, He Y, Chen L, Dong Q, Zhang H, Chen S, Li P. Network pharmacology: a bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin Med 2023; 18:146. [PMID: 37941061 PMCID: PMC10631104 DOI: 10.1186/s13020-023-00853-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Network pharmacology can ascertain the therapeutic mechanism of drugs for treating diseases at the level of biological targets and pathways. The effective mechanism study of traditional Chinese medicine (TCM) characterized by multi-component, multi-targeted, and integrative efficacy, perfectly corresponds to the application of network pharmacology. Currently, network pharmacology has been widely utilized to clarify the mechanism of the physiological activity of TCM. In this review, we comprehensively summarize the application of network pharmacology in TCM to reveal its potential of verifying the phenotype and underlying causes of diseases, realizing the personalized and accurate application of TCM. We searched the literature using "TCM network pharmacology" and "network pharmacology" as keywords from Web of Science, PubMed, Google Scholar, as well as Chinese National Knowledge Infrastructure in the last decade. The origins, development, and application of network pharmacology are closely correlated with the study of TCM which has been applied in China for thousands of years. Network pharmacology and TCM have the same core idea and promote each other. A well-defined research strategy for network pharmacology has been utilized in several aspects of TCM research, including the elucidation of the biological basis of diseases and syndromes, the prediction of TCM targets, the screening of TCM active compounds, and the decipherment of mechanisms of TCM in treating diseases. However, several factors limit its application, such as the selection of databases and algorithms, the unstable quality of the research results, and the lack of standardization. This review aims to provide references and ideas for the research of TCM and to encourage the personalized and precise use of Chinese medicine.
Collapse
Affiliation(s)
- Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Liuqing Yang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Huaiying Zhang
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
| | - Shiyun Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
7
|
Miao LW, Liu TZ, Sun YH, Cai N, Xuan YY, Wei Z, Cui BB, Jing LL, Ma HP, Xian CJ, Wang JF, Gao YH, Chen KM. Simulated microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts can be prevented by protection of primary cilia. J Cell Physiol 2023; 238:2692-2709. [PMID: 37796139 DOI: 10.1002/jcp.31127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.
Collapse
Affiliation(s)
- Lu-Wei Miao
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Tian-Zhen Liu
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Yue-Hong Sun
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Nan Cai
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Ying-Ying Xuan
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Zhenlong Wei
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Bing-Bing Cui
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Lin-Lin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Hui-Ping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ju-Fang Wang
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yu-Hai Gao
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Ke-Ming Chen
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, China
| |
Collapse
|
8
|
Chiu PWY, Yue GGL, Cheung MK, Yip HC, Chu SK, Yung MY, Wu JCY, Chan SM, Teoh AYB, Ng EKW, Norimoto H, Lau CBS. The effect of Andrographis paniculata water extract on palliative management of metastatic esophageal squamous cell carcinoma-A phase II clinical trial. Phytother Res 2023; 37:3438-3452. [PMID: 37042309 DOI: 10.1002/ptr.7815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/13/2023]
Abstract
Patients with metastatic esophageal squamous cell carcinoma (ESCC) have a grave prognosis with limited life expectancy. Here, a phase II clinical trial was conducted to investigate the effect of Andrographis paniculata (AP) on the palliative care of patients with metastatic ESCC. Patients with metastatic or locally advanced ESCC deemed unfit for surgery, and who have already completed palliative chemotherapy or chemoradiotherapy or are not fit for these treatments, were recruited. These patients were prescribed AP concentrated granules for 4 months. They also received clinical and quality of life assessments for clinical response, as well as positron emission tomography-computed tomography at 3 and 6 months after AP treatment for the assessment of tumor volume. Furthermore, the change in gut microbiota composition after AP treatment was studied. From the results, among the 30 recruited patients, 10 completed the entire course of AP treatment, while 20 received partial AP treatment. Patients who completed the AP treatment achieved significantly longer overall survival periods with the maintenance of the quality of life during the survival period when compared to those who could not complete AP treatment. The treatment effect of AP also contributed to the shift of the overall structure of gut microbiota for ESCC patients towards those of healthy individuals. The significance of this study is the establishment of AP as a safe and effective palliative treatment for patients with squamous cell carcinoma of the esophagus. To the best of our knowledge, this is the first clinical trial of AP water extract in esophageal cancer patients demonstrating its new medicinal use.
Collapse
Affiliation(s)
- Philip Wai-Yan Chiu
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man Kit Cheung
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Chi Yip
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Siu-Kai Chu
- Nong's, PuraPharm Corporation Limited, Tai Po, Hong Kong
| | - Man-Yee Yung
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Justin Che-Yuen Wu
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
- Division of Gastroenterology and Hepatology, Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Melissa Chan
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anthony Yuen-Bun Teoh
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Enders Kwok-Wai Ng
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|