1
|
Parletta AC, Cerri GC, Gasparini CRB, Panico K, Vieira-Junior DN, Zacarias-Rodrigues LM, Senger N, de Almeida Silva A, Fevereiro M, Diniz GP, Irigoyen MCC, Barreto-Chaves MLM. Cardiac hypertrophy that affects hyperthyroidism occurs independently of the NLRP3 inflammasome. Pflugers Arch 2024; 476:1065-1075. [PMID: 38679646 DOI: 10.1007/s00424-024-02965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Cardiac hypertrophy (CH) is an adaptive response to maintain cardiac function; however, persistent stress responses lead to contractile dysfunction and heart failure. Although inflammation is involved in these processes, the mechanisms that control cardiac inflammation and hypertrophy still need to be clarified. The NLRP3 inflammasome is a cytosolic multiprotein complex that mediates IL-1β production. The priming step of NLRP3 is essential for increasing the expression of its components and occurs following NF-κB activation. Hyperthyroidism triggers CH, which can progress to maladaptive CH and even heart failure. We have shown in a previous study that thyroid hormone (TH)-induced CH is linked to the upregulation of S100A8, leading to NF-κB activation. Therefore, we aimed to investigate whether the NLRP3 inflammasome is involved in TH-induced CH and its potential role in CH pathophysiology. Hyperthyroidism was induced in NLRP3 knockout (NLRP3-KO), Caspase-1-KO and Wild Type (WT) male mice of the C57Bl/6J strain, aged 8-12 weeks, by triiodothyronine (7 μg/100 g BW, i.p.) administered daily for 14 days. Morphological and cardiac functional analysis besides molecular assays showed, for the first time, that TH-induced CH is accompanied by reduced NLRP3 expression in the heart and that it occurs independently of the NLRP3 inflammasome and caspase 1-related pathways. However, NLRP3 is important for the maintenance of basal cardiac function since NLRP3-KO mice had impaired diastolic function and reduced heart rate, ejection fraction, and fractional shortening compared with WT mice.
Collapse
Affiliation(s)
- Aline Cristina Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Gabriela Cavazza Cerri
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Claudia Ribeiro Borba Gasparini
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Karine Panico
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Denival Nascimento Vieira-Junior
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Larissa Maria Zacarias-Rodrigues
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Amanda de Almeida Silva
- Department of Cardiopneumology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
| | - Gabriela Placoná Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani School of Medicine, University of South Florida, Tampa, FL, USA
| | - Maria Cláudia Costa Irigoyen
- Department of Cardiopneumology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415, Butanta, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
2
|
Zhang X, Zhang M, Zhang Z, Zhou S. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production. Exp Cell Res 2024; 438:114034. [PMID: 38588875 DOI: 10.1016/j.yexcr.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.
Collapse
Affiliation(s)
- Xianqi Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi Province, China.
| | - Ziyan Zhang
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
He J, Huang L, Sun K, Li J, Han S, Gao X, Wang QQ, Yang S, Sun W, Gao H. Oleuropein alleviates myocardial ischemia-reperfusion injury by suppressing oxidative stress and excessive autophagy via TLR4/MAPK signaling pathway. Chin Med 2024; 19:59. [PMID: 38589925 PMCID: PMC11003011 DOI: 10.1186/s13020-024-00925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (MIRI) is an important complication of reperfusion therapy, and has a lack of effective prevention and treatment methods. Oleuropein (OP) is a natural strong antioxidant with many protective effects on cardiovascular diseases, but its protective effect on MIRI has not yet been studied in depth. METHODS Tert-Butyl hydroperoxide (tBHP) was used to establish an in vitro oxidative stress model. Cell viability was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH). Flow cytometry and fluorescence assays were performed for evaluating the ROS levels and mitochondrial membrane potential (MMP). Immunofluorescence analysis detected the NRF2 nuclear translocation and autophagy indicators. Further, Western blotting and quantitative real-time PCR were performed to evaluate the expression levels of proteins and mRNAs. Molecular docking, CETSA, and molecular interaction analysis explored the binding between OP and TLR4. The protective effects of OP in vivo were determined using a preclinical MIRI rat model. RESULTS OP protected against tBHP-treated injury, reduced ROS levels and reversed the damaged MMP. Mechanistically, OP activated NRF2-related antioxidant pathways, inhibited autophagy and attenuated the TLR4/MAPK signaling pathway in tBHP-treated H9C2 cells with a high binding affinity to TLR4 (KD = 37.5 µM). The TLR4 inhibitor TAK242 showed a similar effect as OP. In vivo, OP could alleviate cardiac ischemia/reperfusion injury and it ameliorated adverse cardiac remodeling. Consistent with in vitro studies, OP inhibited TLR4/MAPK and autophagy pathway and activated NRF2-dependent antioxidant pathways in vivo. CONCLUSION This study shows that OP binds to TLR4 to regulate oxidative stress and autophagy for protecting damaged cardiomyocytes, supporting that OP can be a potential therapeutic agent for MIRI.
Collapse
Affiliation(s)
- Jia He
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Shan Han
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Xiang Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Qin-Qin Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Shilin Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| |
Collapse
|
4
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|