1
|
Tzekaki EE, Katsipis G, Chatzikostopoulos A, Koutoupa A, Lavrentiadou SN, Tsolaki M, Pantazaki AA. Neuroprotective, Antioxidant and Anti-Inflammatory Effect of Greek Pomegranate Seed Oil on N2a Neuroblastoma Cells and Mild Cognitive Impairment Patients. BIOLOGY 2025; 14:548. [PMID: 40427737 PMCID: PMC12109235 DOI: 10.3390/biology14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025]
Abstract
Alzheimer's disease (AD) remains a significant global health challenge with limited FDA-approved treatments, necessitating the search for novel preventive strategies. Antioxidants that are present in fruits and vegetables have garnered attention due to their potential neuroprotective effects. Among these, pomegranate (Punica granatum L.) has emerged as a promising source of neuroprotective antioxidants as it is rich in polyphenols, flavonoids, and hydrolysable tannins. Pomegranate seed oil (PSO) is a source of bioactive compounds that may modulate key pathological processes of AD. This study investigated the therapeutic potential of PSO in murine neuroblastoma N2a cells treated with lipopolysaccharide (LPS) to simulate AD-like inflammation. The effects of PSO on inflammation and oxidative stress markers, including TNF-α, iNOS, SOD1, and IL1β, were evaluated, along with changes in AD-related biomarkers Aβ42, Aβ40, and p-tau181. Additionally, the study extended its findings to clinical settings by assessing the impact of supervised PSO consumption for 12 months on similar biomarkers in patients with mild cognitive impairment. Results from this integrative approach demonstrated the anti-inflammatory and antioxidant potential of PSO, supporting its role in modulating AD-associated pathophysiology. These findings suggest that PSO may serve as an early-stage intervention to delay or mitigate AD progression, highlighting its therapeutic potential in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Eleni E. Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.E.T.); (G.K.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece; (A.C.); (S.N.L.); (M.T.)
| | - Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.E.T.); (G.K.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece; (A.C.); (S.N.L.); (M.T.)
| | - Athanasios Chatzikostopoulos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece; (A.C.); (S.N.L.); (M.T.)
- Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD), 54643 Thessaloniki, Greece;
| | - Anna Koutoupa
- Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD), 54643 Thessaloniki, Greece;
| | - Sophia N. Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece; (A.C.); (S.N.L.); (M.T.)
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Magda Tsolaki
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece; (A.C.); (S.N.L.); (M.T.)
- Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD), 54643 Thessaloniki, Greece;
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.E.T.); (G.K.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece; (A.C.); (S.N.L.); (M.T.)
| |
Collapse
|
2
|
Farhat G, Malla J, Al-Dujaili EAS, Vadher J, Nayak P, Drinkwater K. Impact of Pomegranate Extract Supplementation on Physical and Cognitive Function in Community-Dwelling Older Adults Aged 55-70 Years: A Randomised Double-Blind Clinical Trial. Geriatrics (Basel) 2025; 10:29. [PMID: 39997528 PMCID: PMC11855203 DOI: 10.3390/geriatrics10010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Background/objectives: Cognitive decline and loss of physical function are common concerns in older adults, with limited effective interventions available. This study aimed to assess the impact of pomegranate extract (PE) supplementation on cognitive and physical function in older adults aged 55-70 years. Methods: A randomised, double-blind placebo-controlled trial was conducted with 86 participants, who were assigned to receive either PE (740 mg) or a placebo (maltodextrin) daily for 12 weeks. Cognitive function was assessed using computerised tests (Corsi, digit span, Wisconsin Card Sorting Test (WCST), Tower of Hanoi, Stroop test and Rey auditory verbal learning test). Physical function was measured through assessments of standing balance, gait speed, chair sit to stand and grip strength. Results: There was a significant effect of treatment and time on WCST performance (F (1,2) = 2.718, p = 0.05), while trends towards better outcomes in the PE group were noted for digit span, Tower of Hanoi and Stroop tests. Physical function did not seem to be affected by the intervention, but results may have been limited by the high baseline physical activity levels and full mobility of the older adults. Conclusions: This was the first study to examine the effect of PE on cognitive and physical function over a duration of 12 weeks. Findings suggest that PE supplementation has potential in improving cognitive function and may offer a promising approach to preventing cognitive decline in ageing adults. Further controlled and well-designed long-term studies are needed to establish the long-term effects of PE on cognitive and physical health, along with the mechanisms of action involved.
Collapse
Affiliation(s)
- Grace Farhat
- Faculty of Health and Education, Manchester Metropolitan University, Manchester M15 6BG, UK;
| | - Jhama Malla
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK;
| | - Emad A. S. Al-Dujaili
- Centre for Cardiovascular Science, Faculty of Medicine and Veterinary Medicine, Queen’s Medical Research Centre, Edinburgh EH16 4TJ, UK;
| | - Jay Vadher
- Faculty of Sport and Exercise, Manchester Metropolitan University, Manchester M15 6BH, UK;
| | - Pradeepa Nayak
- Faculty of Health and Education, Manchester Metropolitan University, Manchester M15 6BG, UK;
| | - Kenneth Drinkwater
- Department of Psychology, Manchester Metropolitan University, Manchester M15 6GX, UK;
| |
Collapse
|
3
|
Chen P, Wu L, Lei J, Chen F, Feng L, Liu G, Zhou B. The ellagitannin metabolite urolithin C attenuated cognitive impairment by inhibiting neuroinflammation via downregulation of MAPK/NF-kB signaling pathways in aging mice. Int Immunopharmacol 2024; 142:113151. [PMID: 39303538 DOI: 10.1016/j.intimp.2024.113151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The current study aimed to evaluate the preventive effects of urolithin C (Uro C), a gut microbial metabolite of ellagitannins on D-galactose (D-gal)-induced brain damage during the aging process and to elucidate the underlying mechanisms. In our study, the protective effect of Uro C on D-gal-induced BV2 microglia cell-mediated neuroinflammation damage in primary cortical neurons in vitro was confirmed. The results in an aging model in vivo induced by D-gal demonstrated that Uro C prevented D-gal-induced memory impairment, long-term potentiation (LTP) damage, and synaptic dysfunction through behavioral, electrophysiological, and histological examinations. Additionally, amyloidogenesis was observed in the central nervous system. The findings indicated that Uro C exhibited a preventive effect on the D-gal-induced elevation of β-amyloid (1-42 specific) (Aβ1-42) accumulation, APP levels, ABCE1 levels, and the equilibrium of the cholinergic system in the aging mouse brain. Moreover, Uro C demonstrated downregulation of D-gal-induced glial overactivation through inhibition of the MAPK/NF-kB pathway. This resulted in the regulation of inflammatory mediators and cytokines, including iNOS, IL-6, IL-1β, and TNF-ɑ, in the mouse brain and BV2 microglial cells. Taken together, our results suggested that Uro C treatment could effectively mitigate the D-gal-induced memory impairment and amyloidogenesis, and the underlying mechanism might be tightly related to the improvement of neuroinflammation by suppressing the MAPK/NF-kB pathway, indicating Uro C might be an alternative and promising agent for the treatment of aging and age-associated brain diseases.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei.
| | - Lining Wu
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, PR China
| | - Lihua Feng
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei
| |
Collapse
|
4
|
Chen P, Zhang Z, Lei J, Zhu J, Liu G. Ellagitannin Component Punicalin Ameliorates Cognitive Dysfunction, Oxidative Stress, and Neuroinflammation via the Inhibition of cGAS-STING Signaling in the Brain of an Aging Mouse Model. Phytother Res 2024; 38:5690-5712. [PMID: 39313488 DOI: 10.1002/ptr.8343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Despite remarkable breakthroughs in pharmacotherapy, many potential therapies for aging remain unexplored. Punicalin (PUN), an ellagitannin component, exerts anti-inflammatory, antioxidant, and anti-apoptotic effects. This study investigated the beneficial effects of PUN against age-related brain damage in mice and explored the underlying mechanisms. We validated the protective effects of PUN against D-galactose (D-gal)-induced neuroinflammation and subsequent neuronal damage in BV2 microglia and N2a cells, respectively, in vitro. In vivo experiments were conducted on mice that were administered an 8-week regimen of intraperitoneal injections of D-gal at a dosage of 150 mg/kg/day, concurrently with oral gavage of PUN at the same dose. PUN inhibited the production of D-gal-induced inflammatory cytokines (iNOS, COX2, TNF-α, IL-6, IL-2, and IL-1β) in BV2 cells and conferred protection to N2a cells against synaptic damage mediated by BV2 microglia-induced neuroinflammation. The in vivo findings revealed that PUN considerably improved memory and learning deficits, reduced MDA levels, enhanced GSH-Px, CAT, and SOD activities, and modulated the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the secretion of SASP factors (ICAM-1, PAI-1, MMP-3, and MMP-9), decreased microglial activation, and reduced astrocytosis. Additionally, PUN suppressed the expression of cGAS, p-STING, p-TBK1, p-p65, and p-IRF3 in aging mouse brains and cultured BV2 microglia. In conclusion, PUN improved cognitive dysfunction in aging mice through antioxidant and anti-inflammatory mechanisms via inhibition of the cGAS-STING pathway, suggesting that it can be a promising therapeutic agent for brain aging and aging-related diseases.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhongyuan Zhang
- Department of Pharmacy, Wuhan Red Cross Hospital, Wuhan, People's Republic of China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jun Zhu
- Department of Pharmacy, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Wang LY, Hu H, Sheng ZH, Hu HY, Zhang ZH, Tan L. Associations among healthy lifestyle characteristics, neuroinflammation, and cerebrospinal fluid core biomarkers of Alzheimer's disease in cognitively intact adults: The CABLE study. J Alzheimers Dis 2024; 102:855-865. [PMID: 39558781 DOI: 10.1177/13872877241291969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND The occurrence of Alzheimer's disease (AD) can be partially prevented through healthy lifestyles, but the mechanisms associated with AD pathology are unclear. OBJECTIVE To explore associations among healthy lifestyle characteristics (HLCs), cerebrospinal fluid (CSF) soluble TREM2 (sTREM2), and AD biomarkers. METHODS From the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study, 924 cognitively normal participants were enrolled in this cross-sectional analysis. We defined the following 11 HLCs: appropriate frequencies of coffee and tea consumption, sufficient frequencies of fish and fruit intake, non-social isolation, adequate sleep, regular physical activity, no depression, never smoking, non-hazardous drinking, and well-maintained blood pressure. We categorized participants according to the number of HLCs reported by participants into favorable, intermediate, and unfavorable lifestyle groups. Multiple linear regression was used to investigate the relationship among HLCs, CSF sTREM2, and AD biomarkers. Mediation effects were tested using a causal mediation analysis having 10,000 bootstrap iterations. RESULTS Included subjects were with a mean age of 61.8 ± 10.2 years, of which 41.8% were female. Sufficient fish intake (β = -0.164, p = 0.017) and well-maintained blood pressure (β = -0.232, p = 0.006) were significantly correlated with lower CSF sTREM2 levels. A larger number of HLCs were associated with lower CSF T-tau (p = 0.001), P-tau (p = 0.012), and sTREM2 (p = 0.040) levels. CSF sTREM2 partially mediated the association between the number of HLCs and CSF tau pathology (mediating proportion T-tau: 22.4%; P-tau: 25.0%). CONCLUSIONS HLCs might impact the pathological processes of AD by regulating neuroinflammation.
Collapse
Affiliation(s)
- Lan-Yang Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zi-Hao Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
7
|
Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, Wang F, Kim YB, Huang C, Chen L, Fan S. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024; 16:3305. [PMID: 39408272 PMCID: PMC11478989 DOI: 10.3390/nu16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| |
Collapse
|
8
|
Chen X, Chen S, Lai X, Fu J, Yang J, Ou R, Zhang L, Wei Q, Guo X, Shang H. Diagnostic value and correlation analysis of serum cytokine levels in patients with multiple system atrophy. Front Cell Neurosci 2024; 18:1459884. [PMID: 39295596 PMCID: PMC11409425 DOI: 10.3389/fncel.2024.1459884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Background The association between cytokines in peripheral blood and clinical symptoms of multiple system atrophy (MSA) has been explored in only a few studies with small sample size, and the results were obviously controversial. Otherwise, no studies have explored the diagnostic value of serum cytokines in MSA. Methods Serum cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α), were measured in 125 MSA patients and 98 healthy controls (HCs). Correlations of these serum cytokines with clinical variables were analyzed in MSA patients. Diagnostic value of cytokines for MSA was plotted by receiver operating curves. Results No significant differences were found in sex and age between the MSA group and the HCs. TNF-α in MSA patients were significantly higher than those in HCs (area under the curve (AUC) 0.768), while IL-6 and IL-8 were not. Only Hamilton Anxiety Scale (HAMA) has a positive correlation between with TNF-α in MSA patients with age and age at onset as covariates. Serum IL-6 was associated with HAMA, Hamilton Depression Scale (HAMD), the Unified MSA Rating Scale I (UMSARS I) scores, the UMSARS IV and the Instrumental Activity of Daily Living scores. However, IL-8 was not associated with all clinical variables in MSA patients. Regression analysis showed that HAMA and age at onset were significantly associated with TNF-α, and only HAMA was mild related with IL-6 levels in MSA patients. Conclusion Serum TNF-α and IL-6 levels in MSA patients may be associated with anxiety symptom; however, only TNF-α was shown to be a useful tool in distinguishing between MSA and HCs.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Lai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Guo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Cordiano R, Gammeri L, Di Salvo E, Gangemi S, Minciullo PL. Pomegranate ( Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024; 29:4174. [PMID: 39275022 PMCID: PMC11396831 DOI: 10.3390/molecules29174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Pomegranate is a notable source of nutrients, containing a considerable proportion of organic acids, polysaccharides, vitamins, fatty acids, and polyphenols such as flavonoids, phenolic acids, and tannins. It is also rich in nutritionally important minerals and chemical elements such as K, P, Na, Ca, Mg, and N. The presence of several bioactive compounds and metabolites in pomegranate has led to its incorporation into the functional food category, where it is used for its numerous therapeutic properties. Pomegranate's bioactive compounds have shown antioxidant, anti-inflammatory, and anticancer effects. Aging is a process characterized by the chronic accumulation of damages, progressively compromising cells, tissues, and organs over time. Inflammaging is a chronic, subclinical, low-grade inflammation that occurs during the aging process and is linked to many age-related diseases. This review aims to summarize and discuss the evidence of the benefits of pomegranate extract and its compounds to slow the aging processes by intervening in the mechanisms underlying inflammaging. These studies mainly concern neurodegenerative and skin diseases, while studies in other fields of application need to be more practical. Furthermore, no human studies have demonstrated the anti-inflammaging effects of pomegranate. In the future, supplementation with pomegranate extracts, polyphenols, or urolithins could represent a valuable low-risk complementary therapy for patients with difficult-to-manage diseases, as well as a valid therapeutic alternative for the topical or systemic treatment of skin pathologies.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Gammeri
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
10
|
Laurindo LF, Rodrigues VD, Minniti G, de Carvalho ACA, Zutin TLM, DeLiberto LK, Bishayee A, Barbalho SM. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. J Nutr Biochem 2024; 131:109670. [PMID: 38768871 DOI: 10.1016/j.jnutbio.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pomegranate (Punica granatum L.) is a multipurpose dietary and medicinal plant known for its ability to promote various health benefits. Metabolic syndrome (MetS) is a complex metabolic disorder driving health and socioeconomic challenges worldwide. It may be characterized by insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This study aims to conduct a review of pomegranate's effects on MetS parameters using a mechanistic approach relying on pre-clinical studies. The peel, juice, roots, bark, seeds, flowers, and leaves of the fruit present several bioactive compounds that are related mainly to anti-inflammatory and antioxidant activities as well as cardioprotective, antidiabetic, and antiobesity effects. The use of the juice extract can work as a potent inhibitor of angiotensin-converting enzyme activities, consequently regulating blood pressure. The major bioactive compounds found within the fruit are phenolic compounds (hydrolysable tannins and flavonoids) and fatty acids. Alkaloids, punicalagin, ellagitannins, ellagic acid, anthocyanins, tannins, flavonoids, luteolin, and punicic acid are also present. The antihyperglycemia, antihyperlipidemia, and weight loss promoting effects are likely related to the anti-inflammatory and antioxidant effects. When considering clinical application, pomegranate extracts are found to be frequently well-tolerated, further supporting its efficacy as a treatment modality. We suggest that pomegranate fruit, extract, or processed products can be used to counteract MetS-related risk factors. This review represents an important step towards exploring potential avenues for further research in this area.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Antonelly Cassio Alves de Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Tereza Laís Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Wang W, Long P, He M, Luo T, Li Y, Yang L, Zhang Y, Wen X. Pomegranate polyphenol punicalagin as a nutraceutical for mitigating mild cognitive impairment: An overview of beneficial properties. Eur J Pharmacol 2024; 977:176750. [PMID: 38897439 DOI: 10.1016/j.ejphar.2024.176750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Dementia treatment has become a global research priority, driven by the increase in the aging population. Punicalagin, the primary polyphenol found in pomegranate fruit, exhibits a variety of benefits. Today, a growing body of research is showing that punicalagin is a nutraceutical for the prevention of mild cognitive impairment (MCI). However, a comprehensive review is still lacking. The aim of this paper is to provide a comprehensive review of the physicochemical properties, origin and pharmacokinetics of punicalagin, while emphasizing the significance and mechanisms of its potential role in the prevention and treatment of MCI. Preclinical and clinical studies have demonstrated that Punicalagin possesses the potential to effectively target and enhance the treatment of MCI. Potential mechanisms by which punicalagin alleviates MCI include antioxidative damage, anti-neuroinflammation, promotion of neurogenesis, and modulation of neurotransmitter interactions. Overall, punicalagin is safer and shows potential as a therapeutic compound for the prevention and treatment of MCI, although more rigorous randomized controlled trials involving large populations are required.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yubo Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610059, China.
| |
Collapse
|
12
|
Cai P, Li W, Xu Y, Wang H. Drp1 and neuroinflammation: Deciphering the interplay between mitochondrial dynamics imbalance and inflammation in neurodegenerative diseases. Neurobiol Dis 2024; 198:106561. [PMID: 38857809 DOI: 10.1016/j.nbd.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Neuroinflammation and mitochondrial dysfunction are closely intertwined with the pathophysiology of neurological disorders. Recent studies have elucidated profound alterations in mitochondrial dynamics across a spectrum of neurological disorders. Dynamin-related protein 1 (DRP1) emerges as a pivotal regulator of mitochondrial fission, with its dysregulation disrupting mitochondrial homeostasis and fueling neuroinflammation, thereby exacerbating disease severity. In addition to its role in mitochondrial dynamics, DRP1 plays a crucial role in modulating inflammation-related pathways. This review synthesizes important functions of DRP1 in the central nervous system (CNS) and the impact of epigenetic modification on the progression of neurodegenerative diseases. The intricate interplay between neuroinflammation and DRP1 in microglia and astrocytes, central contributors to neuroinflammation, is expounded upon. Furthermore, the use of DRP1 inhibitors to influence the activation of microglia and astrocytes, as well as their involvement in processes such as mitophagy, mitochondrial oxidative stress, and calcium ion transport in CNS-mediated neuroinflammation, is scrutinized. The modulation of microglia to astrocyte crosstalk by DRP1 and its role in inflammatory neurodegeneration is also highlighted. Overall, targeting DRP1 presents a promising avenue for ameliorating neuroinflammation and enhancing the therapeutic management of neurological disorders.
Collapse
Affiliation(s)
- Peiyang Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wuhao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ye Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China..
| |
Collapse
|
13
|
Chen P, Wang Y, Xie J, Lei J, Zhou B. Methylated urolithin A, mitigates cognitive impairment by inhibiting NLRP3 inflammasome and ameliorating mitochondrial dysfunction in aging mice. Neuropharmacology 2024; 252:109950. [PMID: 38636727 DOI: 10.1016/j.neuropharm.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Effective therapeutic interventions for elderly patients are lacking, despite advances in pharmacotherapy. Methylated urolithin A (mUro A), a modified ellagitannin (ET)-derived metabolite, exhibits anti-inflammatory, antioxidative, and anti-apoptotic effects. Current research has primarily investigated the neuroprotective effects of mUroA in aging mice and explored the underlying mechanisms. Our study used an in vivo aging model induced by d-galactose (D-gal) to show that mUro A notably improved learning and memory, prevented synaptic impairments by enhancing synaptic protein expression and increasing EPSCs, and reduced oxidative damage in aging mice. mUro A alleviated the activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, leading to reduced glial cell activity and neuroinflammation in both accelerated aging and naturally senescent mouse models. Moreover, mUroA enhanced the activity of TCA cycle enzymes (PDH, CS, and OGDH), decreased 8-OHdG levels, and raised ATP and NAD+ levels within the mitochondria. At the molecular level, mUro A decreased phosphorylated p53 levels and increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), thus enhancing mitochondrial function. In conclusion, mUro A alleviates cognitive impairment in aging mice by suppressing neuroinflammation through NLRP3 inflammasome inhibition and restoring mitochondrial function via the p53-PGC-1α pathway. This suggests its potential therapeutic agent for brain aging and aging-related diseases.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435099, PR China
| | - Jing Xie
- Department of Pharmacy, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
14
|
Chen P, Guo Z, Lei J, Wang Y. Pomegranate polyphenol punicalin ameliorates lipopolysaccharide-induced memory impairment, behavioral disorders, oxidative stress, and neuroinflammation via inhibition of TLR4-NF-кB pathway. Phytother Res 2024; 38:3489-3508. [PMID: 38695373 DOI: 10.1002/ptr.8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 07/12/2024]
Abstract
Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1β, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aβ1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-β, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhilei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
15
|
Siddiqui N, Saifi A, Chaudhary A, Tripathi PN, Chaudhary A, Sharma A. Multifaceted Neuroprotective Role of Punicalagin: A Review. Neurochem Res 2024; 49:1427-1436. [PMID: 38085406 DOI: 10.1007/s11064-023-04081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 05/21/2024]
Abstract
Millions of people worldwide are currently afflicted with neurologic conditions like a seizure, depression, stress, Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, the precise etiopathology of these diseases is still unknown. Substantial studies are being conducted to discover more treatments against these disorders because many patients do not experience the therapeutic benefits that would be expected from using existing pharmaceutical strategies. Herbal medicines which have been used in traditional medicine for millennia to treat various neurological problems are also being investigated and scientifically assessed. Punicalagin is a known polyphenol that has significant antioxidant, anti-inflammatory, anti-viral, anti-proliferative, and anti-cancer properties. Around the world, traditional use of herbal drugs is gaining wider acceptance as a part of complementary and alternative medicine. The scientific community should pay attention to these many neuroprotective pharmacodynamic activities of Punicalagin to create effective pharmacotherapeutic plans, as evidenced by mounting data in pre-clinical research investigations. The current review describes the recent studies on the pharmacological effects of Punicalagin in a variety of neurological illnesses and paves the way for further study in this field.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| |
Collapse
|
16
|
Tan X, Long Y, Zhang R, Zhang Y, You Z, Yang L. Punicalagin Ameliorates Diabetic Liver Injury by Inhibiting Pyroptosis and Promoting Autophagy via Modulation of the FoxO1/TXNIP Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300912. [PMID: 38847553 DOI: 10.1002/mnfr.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Indexed: 07/04/2024]
Abstract
Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1β, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.
Collapse
Affiliation(s)
- Xiuying Tan
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yi Long
- Children's Medical Center, People's Hospital, Hunan Province, Changsha, 410005, China
| | - Rou Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yuhan Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Ziyi You
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| |
Collapse
|
17
|
Vicente-Zurdo D, Gómez-Mejía E, Rosales-Conrado N, León-González ME. A Comprehensive Analytical Review of Polyphenols: Evaluating Neuroprotection in Alzheimer's Disease. Int J Mol Sci 2024; 25:5906. [PMID: 38892094 PMCID: PMC11173253 DOI: 10.3390/ijms25115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's Disease (AD), a prevalent neurodegenerative disorder, is the primary cause of dementia. Despite significant advancements in neuroscience, a definitive cure or treatment for this debilitating disease remains elusive. A notable characteristic of AD is oxidative stress, which has been identified as a potential therapeutic target. Polyphenols, secondary metabolites of plant origin, have attracted attention due to their potent antioxidant properties. Epidemiological studies suggest a correlation between the consumption of polyphenol-rich foods and the prevention of chronic diseases, including neurodegenerative disorders, which underscores the potential of polyphenols as a therapeutic strategy in AD management. Hence, this comprehensive review focuses on the diverse roles of polyphenols in AD, with a particular emphasis on neuroprotective potential. Scopus, ScienceDirect, and Google Scholar were used as leading databases for study selection, from 2018 to late March 2024. Analytical chemistry serves as a crucial tool for characterizing polyphenols, with a nuanced exploration of their extraction methods from various sources, often employing chemometric techniques for a holistic interpretation of the advances in this field. Moreover, this review examines current in vitro and in vivo research, aiming to enhance the understanding of polyphenols' role in AD, and providing valuable insights for forthcoming approaches in this context.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Montepríncipe Urbanization, 28660 Boadilla del Monte, Spain
| | - Esther Gómez-Mejía
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - Noelia Rosales-Conrado
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - María Eugenia León-González
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| |
Collapse
|
18
|
Verdú D, Valls A, Díaz A, Carretero A, Dromant M, Kuligowski J, Serna E, Viña J. Pomegranate Extract Administration Reverses Loss of Motor Coordination and Prevents Oxidative Stress in Cerebellum of Aging Mice. Antioxidants (Basel) 2023; 12:1991. [PMID: 38001844 PMCID: PMC10669012 DOI: 10.3390/antiox12111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The cerebellum is responsible for complex motor functions, like maintaining balance and stance, coordination of voluntary movements, motor learning, and cognitive tasks. During aging, most of these functions deteriorate, which results in falls and accidents. The aim of this work was to elucidate the effect of a standardized pomegranate extract during four months of supplementation in elderly mice to prevent frailty and improve the oxidative state. Male C57Bl/6J eighteen-month-old mice were evaluated for frailty using the "Valencia Score" at pre-supplementation and post-supplementation periods. We analyzed lipid peroxidation in the cerebellum and brain cortex and the glutathione redox status in peripheral blood. In addition, a set of aging-related genes in cerebellum and apoptosis biomarkers was measured via real-time polymerase chain reaction (RT-PCR). Our results showed that pomegranate extract supplementation improved the motor skills of C57Bl/6J aged mice in motor coordination, neuromuscular function, and monthly weight loss, but no changes in grip strength and endurance were found. Furthermore, pomegranate extract reversed the increase in malondialdehyde due to aging in the cerebellum and increased the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the blood. Finally, aging and apoptosis biomarkers improved in aged mice supplemented with pomegranate extract in the cerebellum but not in the cerebral cortex.
Collapse
Affiliation(s)
- David Verdú
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Alicia Valls
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Ana Díaz
- Central Unit for Research in Medicine (UCIM), University of Valencia, 46010 Valencia, Spain
| | - Aitor Carretero
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Mar Dromant
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe (IISLaFe), 46026 Valencia, Spain
| | - Eva Serna
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| | - José Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|