1
|
Calabrese EJ, Pressman P, Hayes AW, Agathokleous E, Dhawan G, Kapoor R, Parmar J, Mssillou I, Calabrese V. Fisetin: hormesis accounts for many of its chemoprotective effects. Biogerontology 2025; 26:90. [PMID: 40208387 DOI: 10.1007/s10522-025-10230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The present paper provides the first integrated assessment of the capacity of the flavonol, fisetin, to induce hormetic dose responses. Fisetin was shown to induce hormetic dose responses in cellular and in vivo animal model systems affecting a broad range of endpoints of potential therapeutic and public health significance across the entire lifespan. Fisetin was effective in slowing aging processes, acting as a senolytic agent in multiple organ systems, in an hormetic fashion. In addition, fisetin was broadly neuroprotective, including during fetal development, and preventing the toxicity of methylmercury. Since these findings indicate that fisetin may have the potential to induce multi-system chemoprotective effects, it indicates the need to better clarify the absorption and bioavailability of fisetin and ways to enhance its efficiency.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health, School of Public Health and Health Sciences, University of Massachusetts, Morrill I-N344, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences Amritsar, India, Hartford, CT, United States
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | | - Ibrahim Mssillou
- National Agency of Medicinal and Aromatic Plants, BP 159, Principal, 34000, Taounate, Morocco
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
2
|
Singh S, Singh V, Singh R, Gouri V, Koch B, Samant M. Synergistic combination of doxorubicin with fisetin for the treatment of lymphoma. Eur J Pharmacol 2025; 992:177361. [PMID: 39929420 DOI: 10.1016/j.ejphar.2025.177361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Lymphoma is a common cancer of the lymphatic system, and its treatment presents considerable clinical difficulties due to the constraints of existing medicines. Anticancer drug such as Doxorubicin (DOX) is an effective chemotherapeutic drug that is frequently used to treat lymphoma and other cancers; however, it is linked with considerable toxicities. Fisetin, a naturally occurring flavonoid, exhibits anticancer properties and has the potential to augment the therapeutic effects of DOX. This study explores the synergistic effects of combining DOX with fisetin in the treatment of lymphoma. The combination of DOX and fisetin significantly inhibits cell viability, induced membrane blabbing, chromatin condensation, and promoted apoptosis compared to monotherapies. The study also showed that the synergistic effect of fisetin along with DOX significantly promotes apoptosis in DL cells through intracellular ROS generation, mitochondrial aggregation at the periphery of the nucleus and, increased p53, Bax, cytochrome c, caspase 3, caspase 9, and cleaved caspase 9 expression. Additionally, combination therapy not only increased the mean survival of the treated group animals but also reduced the tumor burden. While histopathological parameters have shown overall improvement in combination therapy. This study proposes a novel combinational therapy for the treatment of lymphoma and requires further clinical investigation.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Virendra Singh
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ranjeet Singh
- Department of Zoology, Soban Singh Jeena University (Bageshwar Campus), Almora, Uttarakhand, India; Department of Zoology Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India; Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
3
|
Chen JK, Ramesh S, Islam MN, Shibu MA, Kuo CH, Hsieh DJY, Lin SZ, Kuo WW, Huang CY, Ho TJ. Artemisia argyi mitigates doxorubicin-induced cardiotoxicity by inhibiting mitochondrial dysfunction through the IGF-IIR/Drp1/GATA4 signaling pathway. Biotechnol Appl Biochem 2025; 72:388-401. [PMID: 39375847 DOI: 10.1002/bab.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Doxorubicin (DOX) is mostly utilized as a wide range of antitumor anthracycline to treat different cancers. The severe antagonistic impacts of DOX on cardiotoxicity constrain its clinical application. Many mechanisms are involved in cardiac toxicity induced by DOX in the human body. Mitochondria is a central part of fatty acid and glucose metabolism. Thus, impaired mitochondrial metabolism can increase heart failure risk, which can play a vital role in cardiomyocyte mitochondrial dysfunction. This study aimed to assess the possible cardioprotective effect of water-extracted Artemisia argyi (AA) against the side effect of DOX in H9c2 cells and whether these protective effects are mediated through IGF-IIR/Drp1/GATA4 signaling pathways. Although several studies proved that AA extract has benefits for various diseases, its cardiac effects have not yet been identified. The H9c2 cells were exposed to 1 μM to establish a model of cardiac toxicity. The results revealed that water-extracted AA could block the expression of IGF-IIR/calcineurin signaling pathways induced by DOX. Notably, our results also showed that AA treatment markedly attenuated Akt phosphorylation and cleaved caspase 3, and the nuclear translocation markers NFATC3 and p-GATA4. Using actin staining for hypertrophy, we determined that AA can reduce the effect of mitochondrial reactive oxygen species and cell size. These findings suggest that water-extracted AA could be a suitable candidate for preventing DOX-induced cardiac damage.
Collapse
Affiliation(s)
- Jhong-Kuei Chen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Md Nazmul Islam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Goyal K, Babu MA, Afzal M, Rekha A, Ali H, Gupta S, Singh RP, Mishra A, Singh H, Agrawal M, Rana M, Imran M, Khan A. Exploring the therapeutic promise of fisetin: molecular mechanisms and clinical aspects in lung cancer. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0444. [PMID: 40013371 DOI: 10.1515/jcim-2024-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Fisetin, a flavonol belonging to the flavonoid subclass, is a ubiquitous dietary flavonoid present in fruits and vegetables, including fruit peels, and has proven potential for anticancer activity, especially for lung cancer - a leading cause of cancer-related deaths globally. The current paper provides the most detailed and elaborate list of the various roles of fisetin in experimentally induced lung cancer cells, and these roles include the promotion of apoptosis, inhibition of cell proliferation, migration, and invasion, as well as the regulation of autophagy. Among the molecular targets, some identified pathways, such as PI3K/Akt, MAPK, and NF-κB, that fisetin affects are crucial for tumor formation, so it can be considered a potential chemopreventive agent. Moreover, fisetin improves the effectiveness of conventional treatments as a chemo- and radiosensitizer and minimizes side effects. However, the overall utility of fisetin for clinical use is now somewhat restricted by its poor solubility and short half-life. It is predicted that the future development of nanotechnologies for drug delivery, such as nanoparticle encapsulation, might help solve these difficulties. Further Preclinical and clinical investigations are required to uniformly determine the safety, efficacy, and standard dosage of fisetin for consumption in lung cancer therapy.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, India
| | - M Arockia Babu
- School of Pharmaceutical Sciences, GLA University, Mathura, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Arcot Rekha
- D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | | | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Himmat Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohit Agrawal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, 158223 College of Pharmacy, Northern Border University , Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, 158223 College of Pharmacy, Northern Border University , Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
5
|
Chen JK, Ramesh S, Islam MN, Shibu MA, Kuo CH, Hsieh DJY, Lin SZ, Kuo WW, Huang CY, Ho TJ. Ohwia caudata inhibits doxorubicin-induced cardiotoxicity by regulating mitochondrial dynamics via the IGF-IIR/p-Drp1/PARP signaling pathway. Biotechnol Appl Biochem 2024; 71:1181-1194. [PMID: 38837810 DOI: 10.1002/bab.2620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.
Collapse
Affiliation(s)
- Jhong-Kuei Chen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Md Nazmul Islam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
7
|
Liu S, Liu J, Su N, Wei S, Xie N, Li X, Xie S, Liu J, Zhang B, Li W, Tan S. An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Andrographolide in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07555-3. [PMID: 38400848 DOI: 10.1007/s10557-024-07555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Doxorubicin (Dox) is clinically limited due to its dose-dependent cardiotoxicity. Andrographolide (Andro) has been confirmed to exert cardiovascular protective activities. This study aimed to investigate protective effects of Andro in Dox-induced cardiotoxicity (DIC). METHODS The cardiotoxicity models were induced by Dox in vitro and in vivo. The viability and apoptosis of H9c2 cells and the myocardial function of c57BL/6 mice were accessed with and without Andro pretreatment. Network pharmacology and RNA-seq were employed to explore the mechanism of Andro in DIC. The protein levels of Bax, Bcl2, NLRP3, Caspase-1 p20, and IL-1β were qualified as well. RESULTS In vitro, Dox facilitated the downregulation of cell viability and upregulation of cell apoptosis, after Andro pretreatment, the above symptoms were remarkably reversed. In vivo, Andro could alleviate Dox-induced cardiac dysfunction and apoptosis, manifesting elevation of LVPWs, LVPWd, EF% and FS%, suppression of CK, CK-MB, c-Tnl and LDH, and inhibition of TUNEL-positive cells. Using network pharmacology, we collected and visualized 108 co-targets of Andro and DIC, which were associated with apoptosis, PI3K-AKT signaling pathway, and others. RNA-seq identified 276 differentially expressed genes, which were enriched in response to oxidative stress, protein phosphorylation, and others. Both network pharmacology and RNA-seq analysis identified Tap1 and Timp1 as key targets of Andro in DIC. RT-QPCR validation confirmed that the mRNA levels of Tap1 and Timp1 were consistent with the sequenced results. Moreover, the high expression of NLRP3, Caspase-1 p20, and IL-1β in the Dox group was reduced by Andro. CONCLUSIONS Andro could attenuate DIC through suppression of Tap1 and Timp1 and inhibition of NLRP3 inflammasome activation, serving as a promising cardioprotective drug.
Collapse
Affiliation(s)
- Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Nan Su
- Department of Ophthalmology, the First People's Hospital of Lanzhou City, Lanzhou, 730050, Gansu Province, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Shengyu Tan
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
8
|
Wang W, Zhang Y, Jian Y, He S, Liu J, Cheng Y, Zheng S, Qian Z, Gao X, Wang X. Sensitizing chemotherapy for glioma with fisetin mediated by a microenvironment-responsive nano-drug delivery system. NANOSCALE 2023; 16:97-109. [PMID: 38087978 DOI: 10.1039/d3nr05195a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Drug resistance has become an obstacle to successful cancer chemotherapies, with therapeutic agents effectively traversing the blood-brain barrier (BBB) remaining a great challenge. A microenvironment responsive and active targeting nanoparticle was constructed to enhance the penetration of drugs, leading to improved therapeutic effects. Dynamic light scattering demonstrated that the prepared nanoparticle had a uniform size. The cRGD modification renders the nanoparticle with active targeting capabilities to traverse the BBB for chemotherapy. The disulfide-bond-containing nanoparticle can be disintegrated in response to a high concentration of endogenous glutathione (GSH) within the tumor microenvironment (TME) for tumor-specific drug release, resulting in more effective accumulation. Notably, the released fisetin further increased the uptake of doxorubicin by glioma cells and exerted synergistic effects to promote apoptosis, induce cellular G2/M cycle arrest, and inhibit cell proliferation and migration in vitro. Moreover, the nanoparticle showed favorable anti-glioma effects in vivo. Our study provides a new strategy to overcome drug resistance by utilizing a natural product to sensitize conventional chemotherapeutics with well-designed targeted nanodelivery systems for cancer treatment.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Jian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Shi He
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Jiagang Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yongzhong Cheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Songping Zheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Zhiyong Qian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Gao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|