1
|
Pan Y, Chen B, Xie J, Chen D, Cai Y, Zhao D, Cao Y, Lian F, Yan X. Lentinan alleviates angiotensin II-induced myocardial remodeling through LMP7-SOCS3 signaling. Int J Biol Macromol 2025; 308:142146. [PMID: 40101827 DOI: 10.1016/j.ijbiomac.2025.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Myocardial remodeling is a major pathological mechanism causing heart failure. As a critical negative modulator of cardiac remodeling, suppressor of cytokine signaling 3 (SOCS3) is regulated by immunoproteasome subunit large multifunctional peptidase 7 (LMP7). Lentinan (LNT), a β-polysaccharide extracted from Lentinus edodes, has anti-inflammatory and antioxidant properties. However, the role and molecular mechanisms of LNT in angiotensin II (Ang II)-triggered myocardial remodeling are unclear. Myocardial remodeling was established using Ang II infusion (1000 or 200 ng/kg/min) for 2 weeks. Cardiomyocytes and cardiac fibroblasts were triggered by Ang II. LNT was administered daily by oral gavage to mice starting 1 day before Ang II or saline treatment. Here, we found that LNT supplementation dose-dependently ameliorated Ang II-triggered myocardial dysfunction and remodeling (hypertrophy, fibrosis, inflammation, and superoxide production). Mechanistically, LNT suppressed SOCS3 protein degradation by downregulating immunoproteasome LMP7 activity and expression, thereby inactivating downstream signaling, such as STAT3, ERK, AKT, NF-κB, and TGF-β. Conversely, SOCS3 knockdown significantly blocked the protective effect of LNT on myocardial remodeling in Ang II-infused mice. Together, our findings suggest that LNT may be a new therapeutic approach for myocardial remodeling and heart failure.
Collapse
Affiliation(s)
- Yu Pan
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
| | - Bingqi Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiawen Xie
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
| | - Danni Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuwei Cai
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
| | - Denghui Zhao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
| | - Yifei Cao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
| | - Fuzhi Lian
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou, China
| | - Xiao Yan
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Gong P, Xu K, Yue S, Wang J, Long H, Yang W, Li N, Wang J, Zhao Y, Chen F. pH-shifted synergistic ultrasound-modified extraction of Hericium erinaceus protein. J Food Sci 2025; 90:e70155. [PMID: 40183792 DOI: 10.1111/1750-3841.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
In this paper, we investigated the effects of different conditions on the extraction rate of Hericium erinaceus protein (HEP), determined the optimal extraction process for alkaline extraction of Hericium erinaceus (HE) protein, and explored the effects of ultrasound-assisted pH-shift treatment on HEP activity. In this study, the extraction rate of HEP demonstrated an initial increase followed by a decline with the rising pH concentration. It also exhibited a gradual increase that plateaued with the increment in the material-liquid ratio, extraction time, and extraction temperature. The response surface methodology was employed to determine the optimal conditions for the traditional alkaline extraction of HE protein, which were identified as an extraction temperature of 66°C, an extraction pH of 12.5, and a material-liquid ratio of 1:25. Furthermore, ultrasound-assisted pH-shift treatment significantly enhanced the sodium taurocholate binding, sodium glycoconjugate binding, and cholesterol inhibitory ability of HEP at a sonication time of 31 min, a sonication temperature of 40°C, and an ultrasound intensity of 30 W/L. This study offers a theoretical foundation for advancing green and efficient protein modification technologies and serves as a crucial basis for the industrial application of functional edible and medicinal fungal protein products.
Collapse
Affiliation(s)
- Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Ke Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Shan Yue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Jie Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Hui Long
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Wenjuan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Nan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Jing Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
3
|
Zhang J, Yang S, Fan S, Xiong M, Yang X, Wang LA, Li Z, Lv J. Amino and Fatty Acids Composition, Volatile Compounds and Antioxidant Activity of Medicinal Mushroom Pholiota limonella (Agaricomycetes) from China. Int J Med Mushrooms 2025; 27:39-46. [PMID: 40096534 DOI: 10.1615/intjmedmushrooms.2024056906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Fruiting bodies of mushrooms represent an important functional food owing to various beneficial health enhancing effects. The edible mushroom Pholiota limonella (Strophariaceae, Agaricomycetes) has been found to contain various bioactive components. In this study, the proximate amino and fatty acids, as well as volatile compounds of P. limonella were analyzed to assess its nutritional and aromatic profiles. The in vitro antioxidant activity of P. limonella extract was evaluated using DPPH, ABTS, and hydroxyl radical-scavenging assays. The results showed that P. limonella possesses antioxidant activity and provided a good research basis for the comprehensive development of P. limonella as functional food product.
Collapse
Affiliation(s)
- Jinxiu Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Shengxuan Yang
- Shijiazhuang No. 4 Pharmaceutical Co. Ltd., Shijiazhuang 050035, People's Republic of China
| | - Shuting Fan
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Miaomiao Xiong
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Xiaomin Yang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Li-An Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Zhuang Li
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Jianhua Lv
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| |
Collapse
|
4
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
5
|
Gebru H, Faye G, Belete T. Antioxidant capacity of Pleurotus ostreatus (Jacq.) P. Kumm influenced by growth substrates. AMB Express 2024; 14:73. [PMID: 38878132 PMCID: PMC11180080 DOI: 10.1186/s13568-024-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
Functional constituents are the main concern in food production and consumption. Because foods rich in functional constituents have antioxidant capacity and are important in keeping consumers healthy. Pleurotus ostreatus is among foods rich in functional constituents. However, its functional constituents are affected by various factors. This study compared the antioxidant capacity of P. ostreatus grown on different substrates: straws of tef (Trt1), barley (Trt2), and wheat (Trt3), husks of faba bean (Trt4), and field pea (Trt5), sawdust (Trt6), and the mixture of the above with 1:1 w/w (Trt7). Trt7 had significantly higher radical scavenging activity (RSA) (73.27%), vitamin C (10.61 mg/100 g), and vitamin D (4.92 mg/100 g) compared to other treatments. Whereas the lowest values of RSA (44.24%), vitamin C (5.39 mg/100 g), and vitamin D (1.21 mg/100 g) were found in Trt2. The results indicated that mixed substrate may be a good growth substrate for functionally beneficial P. ostreatus and could be a promising source of natural antioxidants.
Collapse
Affiliation(s)
- Hailu Gebru
- Department of Horticulture, College of Agriculture and Natural Resources, Salale University, P.O. Box 245, Fiche, Ethiopia.
| | - Gezahegn Faye
- Department of Chemistry, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| | - Tolosa Belete
- Department of Biology, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| |
Collapse
|
6
|
Xie L, Guo S, Rao H, Lan B, Zheng B, Zhang N. Characterization of Volatile Flavor Compounds and Aroma Active Components in Button Mushroom ( Agaricus bisporus) across Various Cooking Methods. Foods 2024; 13:685. [PMID: 38472797 DOI: 10.3390/foods13050685] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
To investigate the impact of various cooking methods on the volatile aroma compounds of button mushroom, gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) were utilized for aroma analysis. The results indicated that the E-nose was able to effectively distinguish between the samples prepared using different cooking methods. In the raw, steamed, boiled and baked samples, 37, 23, 33 and 35 volatiles were detected, respectively. The roasting process significantly contributed to the production of flavor compounds, giving button mushroom its distinctive flavor. Sixteen differential aromas were identified based on the p-value and VIP value. Additionally, the cluster analysis of differential aroma substances revealed a stronger odor similarity between the steamed and raw groups, consistent with the results of the OPLS-DA analysis of overall aroma components. Seven key aromas were identified through OAV analysis and omission experiments. In addition, 1-octen-3-one was identified as the main aroma component of cooked button mushroom. The findings of the study can be valuable for enhancing the flavor of cooked button mushroom.
Collapse
Affiliation(s)
- Limei Xie
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoli Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongting Rao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bingying Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou 350002, China
| | - Ningning Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou 350002, China
| |
Collapse
|
7
|
Jin Yang H, Kwon EB, Choi JG, Li W. Sarcodonol A-D from fruiting bodies of Sarcodon imbricatus inhibits HCoV-OC43 induced apoptosis in MRC-5 cells. Bioorg Chem 2023; 140:106824. [PMID: 37669581 DOI: 10.1016/j.bioorg.2023.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Four new 26-carboxylated ergostane-type sterols (Sarcodonol A-D) were isolated from 70% ethanol extracts of dried fruiting bodies of Sarcodon imbricatus. Their chemical structures were elucidated using 1D- and 2D-nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and confirmed by comparison with previously reported data. As far as we know, this is the first instance of isolating a 26-carboxylated ergostane-type sterol from nature. The determined antiviral efficacy of sarcodonol A-D (1-4) against HCoV-OC43 in MRC-5 cells confirmed that sarcodonol D (4) had significant antiviral activity. Notably, sarcodonol D (4) potently blocked virus infection at low-micromolar concentration and showed high SI (IC50 = 2.26 μM; CC50 > 100 μM; SI > 44.2). In addition, this research shows that the antiviral effect of sarcodonol D (4) via reduced apoptosis increased by viral infection is through mitochondrial stress regulation. This suggests that sarcodonol D (4) is a potential candidate for use as an antiviral treatment.
Collapse
Affiliation(s)
- Hye Jin Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| |
Collapse
|
8
|
Gebreyohannes G, Sbhatu DB. Wild Mushrooms: A Hidden Treasure of Novel Bioactive Compounds. Int J Anal Chem 2023; 2023:6694961. [PMID: 37781342 PMCID: PMC10541307 DOI: 10.1155/2023/6694961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Secondary metabolites are hidden gems in mushrooms. Understanding these secondary metabolites' biological and pharmacological effects can be aided by identifying them. The purpose of this work was to profile the mycochemical components of the extracts of Auricularia auricula judae, Microporus xanthopus, Termitomyces umkowaani, Trametes elegans, and Trametes versicolor to comprehend their biological and pharmacological capabilities. Mushroom samples were collected from Kenya's Arabuko-Sokoke and Kakamega National Reserved Forests and identified using morphological and molecular techniques. Chloroform, 70% ethanol, and hot water solvents were used to extract the mycochemical components. Gas chromatography mass spectrometry (GC-MS) was used to analyze the chloroform, 70% ethanol, and hot water extracts of all the species examined. A total of 51 compounds were isolated from all extracts and classified as carboxylic acids, esters, phenols, fatty acids, alcohol, epoxides, aldehydes, fatty aldehydes, isoprenoid lipids, and steroids. Tetracosamethyl-cyclododecasiloxane (18.90%), oleic acid (72.90%), phenol, 2, 6-bis (1, 1-dimethylethyl)-4-methyl-, and methylcarbamate (26.56%) were all found in high concentrations in A. auricular judae, M. xanthopus, T. umkowaani, T. elegans, and T. versicolor, respectively. Fatty acids make up the majority of the compounds isolated from the T. elegans chloroform extract and the T. umkowaani 70% ethanol extract, respectively. Particularly, these fatty acids play crucial roles in the anti-inflammatory, hypocholesterolemic, anticancer, and antibiofilm formation activities. These bioactive elements indicate that the extracts of five wild mushrooms may be reliable sources of secondary metabolites for therapeutic development. Therefore, additional research is required to comprehend the usefulness of these chemicals in many functional areas and to improve the present understanding of macrofungi.
Collapse
Affiliation(s)
- Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| | - Desta Berhe Sbhatu
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| |
Collapse
|