1
|
Liu S, Liu J, Su N, Wei S, Xie N, Li X, Xie S, Liu J, Zhang B, Li W, Tan S. An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Andrographolide in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Drugs Ther 2025; 39:517-531. [PMID: 38400848 DOI: 10.1007/s10557-024-07555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Doxorubicin (Dox) is clinically limited due to its dose-dependent cardiotoxicity. Andrographolide (Andro) has been confirmed to exert cardiovascular protective activities. This study aimed to investigate protective effects of Andro in Dox-induced cardiotoxicity (DIC). METHODS The cardiotoxicity models were induced by Dox in vitro and in vivo. The viability and apoptosis of H9c2 cells and the myocardial function of c57BL/6 mice were accessed with and without Andro pretreatment. Network pharmacology and RNA-seq were employed to explore the mechanism of Andro in DIC. The protein levels of Bax, Bcl2, NLRP3, Caspase-1 p20, and IL-1β were qualified as well. RESULTS In vitro, Dox facilitated the downregulation of cell viability and upregulation of cell apoptosis, after Andro pretreatment, the above symptoms were remarkably reversed. In vivo, Andro could alleviate Dox-induced cardiac dysfunction and apoptosis, manifesting elevation of LVPWs, LVPWd, EF% and FS%, suppression of CK, CK-MB, c-Tnl and LDH, and inhibition of TUNEL-positive cells. Using network pharmacology, we collected and visualized 108 co-targets of Andro and DIC, which were associated with apoptosis, PI3K-AKT signaling pathway, and others. RNA-seq identified 276 differentially expressed genes, which were enriched in response to oxidative stress, protein phosphorylation, and others. Both network pharmacology and RNA-seq analysis identified Tap1 and Timp1 as key targets of Andro in DIC. RT-QPCR validation confirmed that the mRNA levels of Tap1 and Timp1 were consistent with the sequenced results. Moreover, the high expression of NLRP3, Caspase-1 p20, and IL-1β in the Dox group was reduced by Andro. CONCLUSIONS Andro could attenuate DIC through suppression of Tap1 and Timp1 and inhibition of NLRP3 inflammasome activation, serving as a promising cardioprotective drug.
Collapse
Affiliation(s)
- Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Nan Su
- Department of Ophthalmology, the First People's Hospital of Lanzhou City, Lanzhou, 730050, Gansu Province, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Shengyu Tan
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
2
|
Wang P, Yang JQ, Xu DD, Zhang SJ, Lu S, Ji Y. Madecassoside mitigates acute myocardial infarction injury by activating the PKCB/SPARC signaling pathway. Acta Pharmacol Sin 2025; 46:1624-1638. [PMID: 39779968 PMCID: PMC12098729 DOI: 10.1038/s41401-024-01442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection. In this study, we investigated the therapeutic effects of the saponin compound madecassoside in the treatment of MI, and underlying molecular mechanisms. The acute MI model was established in male mice by ligation of the left anterior descending coronary artery. The mice were treated with madecassoside (20 mg· kg-1 ·d-1, i.g.) for 14 days. After sacrificing the mice, hearts were harvested for analysis. We showed that madecassoside administration significantly mitigated cardiac function decline in MI mice by promoting angiogenesis and inhibiting myocardial cell apoptosis and fibrosis. By conducting systems pharmacology and RNA sequencing, we demonstrated that madecassoside upregulated SPARC gene expression by activating protein kinase C-β (PKCB) that had a strong promoting effect on endothelial cell angiogenesis, thus playing a crucial protective role against MI. We showed that inhibition of SPARC gene significantly reduced madecassoside-stimulated migration and tube formation of endothelial cells in vitro; co-administration of the PKCB-specific inhibitor ruboxistaurin (10 mg· kg-1 ·d-1, i.g.) abolished the cardioprotective effect of madecassoside in MI mice, validating the critical role of the PKCB/SPARC signaling pathway. This study demonstrates that madecassoside regulates the PKCB/SPARC pathway, promotes the proliferation and regeneration of vascular endothelial cells, and effectively alleviates the symptoms of MI.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ji-Qin Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dan-Dan Xu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Si-Jia Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, 150000, China
| | - Shan Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
3
|
Zhao XP, Duan L, Zhao QR, Lv X, Tian NY, Yang SL, Dong K. NLRP3 inflammasome as a therapeutic target in doxorubicin-induced cardiotoxicity: role of phytochemicals. Front Pharmacol 2025; 16:1567312. [PMID: 40313623 PMCID: PMC12043718 DOI: 10.3389/fphar.2025.1567312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Doxorubicin (DOX) has received widespread attention as a broad-spectrum antitumor drug. However, it has been a recognized challenge that long-term DOX injections can lead to severe cardiotoxicity. There are numerous interventions to DOX-induced cardiotoxicity, and the most cost-effective is phytochemicals. It has been reported that phytochemicals have complex and diverse biological properties, facilitating the mitigation of DOX-induced cardiotoxicity. DOX-induced cardiotoxicity has numerous pathological mechanisms, and the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis is one of them. This review initially presents an overview of the pathological mechanisms that underlie cardiotoxicity induced by DOX. Subsequently, we present a comprehensive elucidation of the structure and activation of the NLRP3 inflammasome. Finally, we provide a detailed summary of phytochemicals that can mitigate DOX-induced cardiotoxicity by influencing the expression of the NLRP3 inflammasome in cardiomyocytes.
Collapse
Affiliation(s)
- Xiao-Peng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Lian Duan
- China Volleyball College, Beijing Sport University, Beijing, China
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Qian-Ru Zhao
- Shenyang Sports Research and Medical Center, Shenyang Sports Development Center, Shenyang, China
| | - Xing Lv
- Department of Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Nai-Yuan Tian
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Sheng-Lei Yang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Kun Dong
- College of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
4
|
Shackebaei D, Yari K, Rahimi N, Gorgani S, Yarmohammadi F. Targeting the NLRP3 by Natural Compounds: Therapeutic Strategies to Mitigate Doxorubicin-Induced Cardiotoxicity. Cell Biochem Biophys 2025:10.1007/s12013-025-01723-4. [PMID: 40100343 DOI: 10.1007/s12013-025-01723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Doxorubicin (DOX), a widely utilized anthracycline chemotherapy agent, is known for its potent anticancer efficacy across various malignancies. However, its clinical use is considerably restricted due to the risk of dose-dependent cardiotoxicity, which can lead to long-term heart dysfunction. The underlying mechanism of DOX-induced cardiotoxicity has been associated with the formation of reactive oxygen species (ROS) and disrupting cellular signaling pathways. This is particularly relevant to the activation of the NLRP3 inflammasome, which triggers inflammation and pyroptosis in cardiac cells. In recent years, there has been growing interest in natural compounds that exhibit potential cardioprotective effects against the adverse cardiac effects of DOX. The present study showed that specific natural compounds, such as honokiol, resveratrol, cynaroside, and curcumin, can confer significant protection against DOX-induced cardiotoxicity through the modulation of NLRP3 inflammasome signaling pathways. In summary, incorporating natural compounds into treatment plans could be a practical approach to improve the safety profile of DOX, thereby protecting cardiac health through the regulation of the NLRP3 pathway.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Rahimi
- Department of Occupational Health and Safety Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Sara Gorgani
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Cai W, Teng T, Wang X, Li B, Gu X, Zhou Y. Thiolutin Alleviates Cardiotoxic Effects of Doxorubicin by Suppressing NLRP3 Inflammasome in the Mouse Model. Cardiovasc Toxicol 2025; 25:182-192. [PMID: 39663334 DOI: 10.1007/s12012-024-09947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Doxorubicin (DOX) has a limitation in clinical oncology due to its dose-dependent cardiotoxicity. Thiolutin (THL) can undermine DOX-induced cardiomyocyte injury by inhibiting the NLRP3 inflammasome activation, yet the efficacy of THL in DOX-induced cardiotoxicity (DOXIC) needs to be validated in animal models. DOX-induced mice were treated with THL to evaluate the efficacy of THL. Relative NLRP3 mRNA levels were determined by quantitative PCR. Blood samples were collected from diffuse large B-cell lymphoma (DLBCL) patients with or without DOXIC to validate serum levels of cTnT, IL-1β, CRP, BNP, and IL-18 by enzyme-linked immunosorbent assay. Apoptosis and pyroptosis-related protein levels were analyzed by western blot. Cardiac function and histopathological changes were determined by echocardiography, HE, Masson's, and wheat germ agglutinin staining. In clinical samples, NLRP3 mRNA and/or protein levels were also markedly heightened in peripheral blood mononuclear cells and serum samples from DOXIC patients, along with higher concentrations of IL-18, cTnT, and IL-1β. Importantly, cTnT possessed a positive correlation with NLRP3 mRNA, IL-1β, and IL-18. Moreover, cTnT possessed a positive correlation with NLRP3 mRNA, IL-1β, and IL-18 levels, suggesting a potential link between DOXIC and NLRP3 inflammasome. The outcomes demonstrated that THL reduced LVEF and LVFS, as well as elevated LVESD and LVEDD in DOX-challenged mice, accompanied by elevated serum concentrations of cTnT, CRP, and BNP. In addition, THL attenuated DOX-induced myocardial hypertrophy and cardiac fibrosis in mice, in conjunction with attenuation of DOX-induced upregulation of C-caspase3, Bax, NLRP3, C-caspase-1/Pro-caspase, GSDMD-N/GSDMD, IL-1β, and IL-18 in heart or serum samples. In conclusion, our data supported that THL alleviates the cardiotoxic effects of DOX and suppresses NLRP3 inflammasome in the mouse model, suggesting that THL as a potential drug for DOXIC.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Inflammasomes/metabolism
- Inflammasomes/antagonists & inhibitors
- Doxorubicin
- Cardiotoxicity
- Disease Models, Animal
- Male
- Humans
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Mice, Inbred C57BL
- Female
- Heart Diseases/prevention & control
- Heart Diseases/metabolism
- Heart Diseases/chemically induced
- Heart Diseases/pathology
- Pyroptosis/drug effects
- Ventricular Function, Left/drug effects
- Signal Transduction
- Antibiotics, Antineoplastic
- Middle Aged
- Mice
Collapse
Affiliation(s)
- Wenyuan Cai
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, 214100, China
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215008, Jiangsu, China
| | - Tingting Teng
- Department of Geriatrics, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, 214000, China
| | - Xiaoyan Wang
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, 214100, China
| | - Baihong Li
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, 214100, China
| | - Xin Gu
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, 214100, China
| | - Yafeng Zhou
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215008, Jiangsu, China.
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
6
|
Zhao K, Zhou F, Lu Y, Gao T, Wang R, Xie M, Wang H. Hyperoside alleviates depressive-like behavior in social defeat mice by mediating microglial polarization and neuroinflammation via TRX1/NLRP1/Caspase-1 signal pathway. Int Immunopharmacol 2025; 145:113731. [PMID: 39647288 DOI: 10.1016/j.intimp.2024.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The primary objective of this study was to investigate the potential pharmacological effects of Hyperoside (Hyp) extract on chronic social defeat stress (CSDS)-induced depression-like behavior in mice. We established CSDS mice to evaluate the antidepressant effects of Hyp. Additionally, We assessed the changes in neuroinflammatory factors in the TRX1/NLRP1/Caspase-1 signaling pathway using adeno-associated virus (AAV) and BV2 microglial cells. The expression levels of TRX1 protein and BDNF also increased by Hyp, while NLRP1 and Caspase-1 a significant decrease. Additionally, Hyp was found to inhibit TRX1 ubiquitination in the microglial inflammation model. In both in vivo and in vitro experiments, it was found that Hyp significantly promotes microglial polarization towards the M2 phenotype in the hippocampus and alleviates neuroinflammation, thereby improving depression-like behavior in CSDS mice. This is associated with the regulation of TRX1 ubiquitination, which inhibits the expression levels of NLRP1 and Caspase-1 proteins.
Collapse
Affiliation(s)
- Keke Zhao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Fangling Zhou
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Youyuan Lu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian Gao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Rui Wang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Hanqing Wang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
7
|
Zhang H, Ding X, Qiu Y, Xie M, Wang H, Li T, Bao H, Huang S, Xiong Y, Tang X. Preventive effect of imperatorin against doxorubicin-induced cardiotoxicity through suppression of NLRP3 inflammasome activation. J Nat Med 2025; 79:95-106. [PMID: 39436583 DOI: 10.1007/s11418-024-01850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1β and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, pro‑caspase‑1, caspase‑1 p20, pro‑IL‑1β and IL‑1β in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1β and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 μg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiaoyun Ding
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yumei Qiu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Mengdie Xie
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hu Wang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Tingting Li
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Huiyun Bao
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Si Huang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yinhua Xiong
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China
| | - Xilan Tang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China.
| |
Collapse
|
8
|
Wu J, Lv T, Liu Y, Liu Y, Han Y, Liu X, Peng X, Tang F, Cai J. The role of quercetin in NLRP3-associated inflammation. Inflammopharmacology 2024; 32:3585-3610. [PMID: 39306817 DOI: 10.1007/s10787-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024]
Abstract
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yu Liu
- Department of Oncology, Gong'an County People's Hospital, Jingzhou, 434000, China
| | - Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Yukun Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, 434023, China
| | - Xin Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore, 138602, Singapore.
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
9
|
Yang Y, Wang Z, Wang N, Yang J, Yang L. CaMKII Exacerbates Doxorubicin-Induced Cardiotoxicity by Promoting Ubiquitination Through USP10 Inhibition. Cancer Med 2024; 13:e70286. [PMID: 39517125 PMCID: PMC11549063 DOI: 10.1002/cam4.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an effective anticancer drug, but it has a problem of cardiotoxicity that cannot be ignored. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is tightly associated with the pathological progression of DOX-induced cardiotoxicity. Ubiquitin-specific protease 10 (USP10) plays an important role in many biological processes and cancers. However, its association with DOX-induced cardiotoxicity and CaMKII remains unclear. METHODS H9C2 cells, HL-1 cells and C57BL/6 mice were used to establish the DOX-induced cardiotoxicity model, and the CaMKII-specific inhibitor KN-93 and USP10 specific inhibitor Spautin-1 were used to observe the CaMKII and USP10 effect. In cell experiments, CCK-8 method was used to assess cell viability, LDH kit was used to assess lactate dehydrogenase expression, DCFH-DA staining was used to observe changes in active oxygen content, TUNEL staining was used to observe cell apoptosis, and Western blotting method was used to detect relevant protein markers. The expression of p-CaMKII and USP10 was assessed by immunofluorescence staining. In animal experiments, mouse echocardiograph was used were used to evaluate cardiac function, and HE staining and Masson staining were used to evaluate myocardial injury. Cardiomyocyte apoptosis was detected by TUNEL staining. Western blotting method was used to detect relevant protein markers. RESULTS Our results demonstrated that activation of CaMKII and inhibition of USP10 pathway related to DOX-induced cardiotoxicity. Inhibition of CaMKII with KN-93 ameliorated DOX-induced cardiac dysfunction and cytotoxicity. In addition, CaMKII inhibition prevented DOX-induced apoptosis and ubiquitination. Furthermore, CaMKII inhibition increased USP10 expression in DOX-treated mouse hearts, H9C2 cells and HL-1 cells. At last, the USP10 inhibitor, Spautin-1, blocked the regulatory effect of CaMKII inhibition on apoptosis and ubiquitination in DOX-induced cardiotoxicity. CONCLUSION Our findings revealed that DOX-induced myocardial apoptosis and activated CaMKII through cellular and animal levels, while providing a novel probe into the mechanism of CaMKII action: promoting ubiquitination by inhibiting USP10 aggravated apoptosis.
Collapse
Affiliation(s)
- Yitong Yang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Department of Children's Respiratory AsthmaSecond Affiliated Hospital of Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Zhenyi Wang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Nisha Wang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jian Yang
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Lifang Yang
- Department of AnesthesiologyChildren's Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
10
|
Bai B, Ma Y, Liu D, Zhang Y, Zhang W, Shi R, Zhou Q. DNA damage caused by chemotherapy has duality, and traditional Chinese medicine may be a better choice to reduce its toxicity. Front Pharmacol 2024; 15:1483160. [PMID: 39502534 PMCID: PMC11534686 DOI: 10.3389/fphar.2024.1483160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background DNA damage induced by chemotherapy has duality. It affects the efficacy of chemotherapy and constrains its application. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in reducing side-effects induced by chemotherapy due to its natural, non-toxic and many sourced from food. Recent advancements have demonstrated survival rates are improved attributable to effective chemotherapy. DNA damage is the principal mechanism underlying chemotherapy. However, not all instances of DNA damage are beneficial. Chemotherapy induces DNA damage in normal cells, leading to side effects. It affects the efficacy of chemotherapy and constrains its application. Objectives This review aims to summarize the dual nature of DNA damage induced by chemotherapy and explore how TCM can mitigate chemotherapy-induced side effects. Results The review summarized the latest research progress in DNA damage caused by chemotherapy and the effect of alleviating side effects by TCM. It focused on advantages and disadvantages of chemotherapy, the mechanism of drugs and providing insights for rational and effective clinical treatment and serving as a basis for experiment. In this review, we described the mechanisms of DNA damage, associated chemotherapeutics, and their toxicity. Furthermore, we explored Chinese herb that can alleviate chemotherapy-induced side-effects. Conclusion We highlight key mechanisms of DNA damage caused by chemotherapeutics and discuss specific TCM herbs that have shown potential in reducing these side effects. It can provide reference for clinical and basic research.
Collapse
Affiliation(s)
- Bufan Bai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingrui Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deng Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Zhang
- Breast Surgery Department, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Dongfang Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| |
Collapse
|
11
|
Li J, Luo T, Zhao Y, Wang D, Jin Y, Wu Z, Yang G, Qi X. Cardioprotective potentials of myricetin on doxorubicin-induced cardiotoxicity based on biochemical and transcriptomic analysis. Biomed Pharmacother 2024; 175:116748. [PMID: 38776683 DOI: 10.1016/j.biopha.2024.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Doxorubicin (DOX) is a commonly used anthracycline in cancer chemotherapy. The clinical application of DOX is constrained by its cardiotoxicity. Myricetin (MYR) is a natural flavonoid widely present in many plants with antioxidant and anti-inflammatory properties. However, MYR's beneficial effects and mechanisms in alleviating DOX-induced cardiotoxicity (DIC) remain unknown. C57BL/6 mice were injected with 15 mg/kg of DOX to establish the DIC, and MYR solutions were administrated by gavage to investigate its cardioprotective potentials. Histopathological analysis, physiological indicators assessment, transcriptomics analysis, and RT-qPCR were used to elucidate the potential mechanism of MYR in DIC treatment. MYR reduced cardiac injury produced by DOX, decreased levels of cTnI, AST, LDH, and BNP, and improved myocardial injury and fibrosis. MYR effectively prevented DOX-induced oxidative stress, such as lowered MDA levels and elevated SOD, CAT, and GSH activities. MYR effectively suppressed NLRP3 and ASC gene expression levels to inhibit pyroptosis while regulating Caspase1 and Bax levels to reduce cardiac cell apoptosis. According to the transcriptomic analysis, glucose and fatty acid metabolism were associated with differential gene expression. KEGG pathway analysis revealed differential gene enrichment in PPAR and AMPK pathways, among others. Following validation, MYR was found to alleviate DIC by regulating glycolipid metabolism and AMPK pathway-related genes. Our findings demonstrated that MYR could mitigate DIC by regulating the processes of oxidative stress, apoptosis, and pyroptosis. MYR is critical in improving DOX-induced myocardial energy metabolism abnormalities mediated by the AMPK signaling pathway. In conclusion, MYR holds promise as a therapeutic strategy for DIC.
Collapse
Affiliation(s)
- Jaili Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang Province 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang Province 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China.
| | - Yao Zhao
- Xianghu Laboratory, Hangzhou, Zhejiang Province 311231, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang Province 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China; Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Yuanxiang Jin
- Xianghu Laboratory, Hangzhou, Zhejiang Province 311231, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310032, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang Province 315832, China.
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang Province 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China; Xianghu Laboratory, Hangzhou, Zhejiang Province 311231, China.
| | - Xingjiang Qi
- Xianghu Laboratory, Hangzhou, Zhejiang Province 311231, China.
| |
Collapse
|
12
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|