1
|
Xu H, Lv D, Guan Y. Appeal of Urolithins from Synthesis to Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40300072 DOI: 10.1021/acs.jafc.5c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Urolithins (Uros), a series of natural polyphenols derived from ellagic acid through gut bacteria metabolism, have gathered significant attention due to their diverse bioactivities such as maintaining mitochondrial health and anti-inflammatory and antioxidative effects. However, the ability to metabolize Uros varies among individuals. This Review provides a comprehensive insight into the synthesis, encapsulation and bioactivities of Uros, focusing on their biotransformation in vivo. We highlight the critical role of gut microbiota in the biotransformation of urolithins, including primary bacterial species such as Gordonibacter urolithinfaciens, Enterocloster bolteae and Enterococcus faecium. Furthermore, the therapeutic potential of Uros in alleviating neurodegenerative diseases, cancer, and Duchenne muscular dystrophy is discussed. Finally, several encapsulation strategies for enhancing the solubility and bioavailability of Uros are summarized. Future research direction includes identifying key genes involved in Uros biotransformation, elucidating the bioactive mechanisms of Uros, and improving their bioavailability. In conclusion, we synthesized biosynthetic pathways and bioactive properties of Uros for better utilization in health management.
Collapse
Affiliation(s)
- Huanyu Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Danyu Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongguang Guan
- Department of Food Science, Foshan University, Foshan 528000, China
| |
Collapse
|
2
|
Zheng B, Wang Y, Zhou B, Qian F, Liu D, Ye D, Zhou X, Fang L. Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages. J Adv Res 2025; 69:125-138. [PMID: 38615740 PMCID: PMC11954813 DOI: 10.1016/j.jare.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Urolithin A (UA) is a naturally occurring compound that is converted from ellagitannin-like precursors in pomegranates and nuts by intestinal flora. Previous studies have found that UA exerts tumor-suppressive effects through antitumor cell proliferation and promotion of memory T-cell expansion, but its role in tumor-associated macrophages remains unknown. OBJECTIVES Our study aims to reveal how UA affects tumor macrophages and tumor cells to inhibit breast cancer progression. METHODS Observe the effect of UA treatment on breast cancer progression though in vivo and in vitro experiments. Western blot and PCR assays were performed to discover that UA affects tumor macrophage autophagy and inflammation. Co-ip and Molecular docking were used to explore specific molecular mechanisms. RESULTS We observed that UA treatment could simultaneously inhibit harmful inflammatory factors, especially for InterleuKin-6 (IL-6) and tumor necrosis factor α (TNF-α), in both breast cancer cells and tumor-associated macrophages, thereby improving the tumor microenvironment and delaying tumor progression. Mechanistically, UA induced the key regulator of autophagy, transcription factor EB (TFEB), into the nucleus in a partially mTOR-dependent manner and inhibited the ubiquitination degradation of TFEB, which facilitated the clearance of damaged mitochondria via the mitophagy-lysosomal pathway in macrophages under tumor supernatant stress, and reduced the deleterious inflammatory factors induced by the release of nucleic acid from damaged mitochondria. Molecular docking and experimental studies suggest that UA block the recognition of TFEB by 1433 and induce TFEB nuclear localization. Notably, UA treatment demonstrated inhibitory effects on tumor progression in multiple breast cancer models. CONCLUSION Our study elucidated the anti-breast cancer effect of UA from the perspective of tumor-associated macrophages. Specifically, TFEB is a crucial downstream target in macrophages.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fengyuan Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
3
|
He X, Wu Z, Jiang J, Xu W, Yuan A, Liao F, Ding S, Pu J. Urolithin A Protects against Hypoxia-Induced Pulmonary Hypertension by Inhibiting Pulmonary Arterial Smooth Muscle Cell Pyroptosis via AMPK/NF-κB/NLRP3 Signaling. Int J Mol Sci 2024; 25:8246. [PMID: 39125817 PMCID: PMC11311380 DOI: 10.3390/ijms25158246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Recent studies confirmed that pyroptosis is involved in the progression of pulmonary hypertension (PH), which could promote pulmonary artery remodeling. Urolithin A (UA), an intestinal flora metabolite of ellagitannins (ETs) and ellagic acid (EA), has been proven to possess inhibitory effects on pyroptosis under various pathological conditions. However, its role on PH remained undetermined. To investigate the potential of UA in mitigating PH, mice were exposed to hypoxia (10% oxygen, 4 weeks) to induce PH, with or without UA treatment. Moreover, in vitro experiments were carried out to further uncover the underlying mechanisms. The in vivo treatment of UA suppressed the progression of PH via alleviating pulmonary remodeling. Pyroptosis-related genes were markedly upregulated in mice models of PH and reversed after the administration of UA. In accordance with that, UA treatment significantly inhibited hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) pyroptosis via the AMPK/NF-κB/NLRP3 pathway. Our results revealed that UA treatment effectively mitigated PH progression through inhibiting PASMC pyroptosis, which represents an innovative therapeutic approach for PH.
Collapse
Affiliation(s)
- Xinjie He
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Zhinan Wu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Jinyao Jiang
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Wenyi Xu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Ancai Yuan
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Fei Liao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
- Department of Cardiology, Punan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (X.H.); (Z.W.); (J.J.); (W.X.); (A.Y.); (F.L.)
| |
Collapse
|
4
|
Remadevi V, Jaikumar VS, Vini R, Krishnendhu B, Azeez JM, Sundaram S, Sreeja S. Urolithin A, induces apoptosis and autophagy crosstalk in Oral Squamous Cell Carcinoma via mTOR /AKT/ERK1/2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155721. [PMID: 38788395 DOI: 10.1016/j.phymed.2024.155721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in the world with an alarming rate of mortality. Despite the advancement in treatment strategies and drug developments, the overall survival rate remains poor. Therefore, it is imperative to develop alternative or complimentary anti cancer drugs with minimum off target effects. Urolithin A, a microbial metabolite of ellagic acid and ellagitannins produced endogenously by human gut micro biome is considered to have anti-cancerous activity. However anti tumorigenic effect of urolithin A in OSCC is yet to be elucidated. In this study, we examined whether urolithin A inhibits cell growth and induces both apoptosis and autophagy dependent cell death in OSCC cell lines. PURPOSE The present study aims to evaluate the potential of urolithin A to inhibit OSCC and its regulatory effect on OSCC proliferation and invasion in vitro and in vivo mouse models. METHODS We evaluated whether urolithin A could induce cell death in OSCC in vitro and in vivo mouse models. RESULTS Flow cytometric and immunoblot analysis on Urolithin A treated OSCC cell lines revealed that urolithin A markedly induced cell death of OSCC via the induction of endoplasmic reticulum stress and subsequent inhibition of AKT and mTOR signaling as evidenced by decreased levels of phosphorylated mTOR and 4EBP1. This further revealed a possible cross talk between apoptotic and autophagic signaling pathways. In vivo study demonstrated that urolithin A treatment reduced tumor size and showed a decrease in mTOR, ERK1/2 and Akt levels along with a decrease in proliferation marker, Ki67. Taken together, in vitro as well as our in vivo data indicates that urolithin A is a potential anticancer agent and the inhibition of AKT/mTOR/ERK signalling is crucial in Urolithin A induced growth suppression in oral cancer. CONCLUSION Urolithin A exerts its anti tumorigenic activity through the induction of apoptotic and autophagy pathways in OSCC. Our findings suggest that urolithin A markedly induced cell death of oral squamous cell carcinoma via the induction of endoplasmic reticulum stress and subsequent inhibition of AKT and mTOR signaling as evidenced by decreased levels of phosphorylated mTOR and 4EBP1. Urolithin A remarkably suppressed tumor growth in both in vitro and in vivo mouse models signifying its potential as an anticancer agent in the prevention and treatment of OSCC. Henceforth, our findings provide a new insight into the therapeutic potential of urolithin A in the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Viji Remadevi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Vishnu Sunil Jaikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Biju Krishnendhu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Juberiya M Azeez
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Sankar Sundaram
- Department of pathology, Government Medical College, Kottayam, Kerala, India
| | - S Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
5
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|