1
|
Fang L, Peng H, Tan Z, Deng N, Peng X. The Role of Gut Microbiota on Intestinal Fibrosis in Inflammatory Bowel Disease and Traditional Chinese Medicine Intervention. J Inflamm Res 2025; 18:5951-5967. [PMID: 40357383 PMCID: PMC12067688 DOI: 10.2147/jir.s504827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the intestine, frequently complicated by intestinal fibrosis. As fibrosis progresses, it can result in luminal stricture and compromised intestinal function, significantly diminishing patients' quality of life. Emerging evidence suggests that gut microbiota and their metabolites contribute to the pathogenesis of IBD-associated intestinal fibrosis by influencing inflammation and modulating immune responses. This review systematically explores the mechanistic link between gut microbiota and intestinal fibrosis in IBD and evaluates the therapeutic potential of traditional Chinese medicine (TCM) interventions. Relevant studies were retrieved from PubMed, Web of Science, Embase, Scopus, CNKI, Wanfang, and VIP databases. Findings indicate that TCM, including Chinese herbal prescriptions and bioactive constituents, can modulate gut microbiota composition and microbial metabolites, ultimately alleviating intestinal fibrosis through anti-inflammatory, immunemodulatory, and anti-fibrotic mechanisms. These insights highlight the potential of TCM as a promising strategy for targeting gut microbiota in the management of IBD-associated fibrosis.
Collapse
Affiliation(s)
- Leyao Fang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huiyi Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhoujin Tan
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Na Deng
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
2
|
Li X, Liu Y, Liu N, Wu H, Cong K, Duan L, Chen T, Zhang J. Health benefits of medicinal plant natural products via microbiota-mediated different gut axes. Pharmacol Res 2025; 215:107730. [PMID: 40216049 DOI: 10.1016/j.phrs.2025.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
This review examines the multifaceted roles of medicinal plant natural products in influencing gut microbiota and their subsequent impact on various organ systems through established gut axes, including the gut-brain, gut-liver, gut-heart, gut-lung, and gut-kidney axes. Medicinal plant natural products have exhibited diverse pharmacological activities, including modulation of microbiota composition, enhancement of metabolic processes, and alleviation of inflammation and oxidative stress. Evidence suggests that these components can ameliorate conditions such as neurological disorders, metabolic syndrome, and chronic kidney disease by restoring microbial balance and improving gut barrier integrity. Furthermore, the review highlights the potential of medicinal plant natural products to foster beneficial microbial communities and improve gut health, which may lead to reduced disease severity and inflammation. By comprehensively analyzing current literature, this review provides a foundation for future research aim at exploring the therapeutic applications of medicinal plant natural products in disease prevention and treatment. The findings underscore the need for further studies to elucidate the underlying mechanisms of action and validate the clinical efficacy of medicinal plant natural products in managing chronic conditions through gut microbiota modulation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yufan Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ning Liu
- Department of The Second Section Office of Breast Tumor, Jilin Cancer Hospital, Changchun 130000, China
| | - Hanning Wu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kexin Cong
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Linnan Duan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tianli Chen
- Changchun University of Chinese Medicine, Changchun 130000, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Lin L, Shen D, Su Y, Zhang Z, Yu J, Xu C, Pan K, Wang Y, Zhang L, Jin S, Song N, Ding X, Teng J, Xu X. Magnesium Lithospermate B Protects Against Ischemic AKI-to-CKD progression via regulating the KLF5/CDK1/Cyclin B1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156765. [PMID: 40262199 DOI: 10.1016/j.phymed.2025.156765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is the primary cause of acute kidney injury (AKI), which can result in chronic kidney disease (CKD) with renal fibrosis. Magnesium lithospermate B (Mlb), a bioactive compound produced from Salvia miltiorrhiza Bunge, exerts nephroprotective effects against AKI. However, the significance of Mlb in the evolution of IRI-induced AKI in patients with CKD remains unclear. Notably, the specific mechanisms underlying the putative antifibrotic activities of Mlb during this progression remain to be fully elucidated. PURPOSE This study sought to explore the therapeutic benefits of Mlb in AKI-to-CKD progression and uncover the potential mechanisms, with a special interest in its effects on renal fibrosis and cell cycle regulation. STUDY DESIGN AND METHODS Unilateral ischemia/reperfusion (UIR)-induced mouse AKI-to-CKD progression (in vivo) and HK-2 cells with TGF-β-induced fibrosis model (in vitro) were used in the study. The beneficial effects of Mlb on renal fibrosis and cell cycle-related signaling pathways were investigated using histological analysis, molecular assays, network pharmacology, and RNA sequencing. RESULTS Mlb treatment significantly reduced renal dysfunction, inflammation, apoptosis, and the G2/M phase cell cycle stalling in mice 14 days post-UIR-induced AKI, subsequently improving renal fibrosis. Mechanistically, Mlb promotes the activity of the CDK1/Cyclin B1 signaling pathway, thereby alleviating the G2/M phase cell cycle stalling. Network pharmacology and RNA sequencing analyses identified the KLF5/CDK1/Cyclin B1 signaling pathway as a potential target of the antifibrotic effects of Mlb, which was further verified in both in vivo and in vitro experiments. The KLF5 inhibitor ML264 attenuated the protective effects of Mlb by reducing CDK1/Cyclin B1 expression and reinstating the G2/M phase cell cycle stalling, highlighting the critical role of this pathway in Mlb-mediated renal protection. CONCLUSIONS Mlb decreases renal fibrosis by inhibiting the G2/M phase cell cycle stalling via the KLF5/CDK1/Cyclin B1 signaling pathway during AKI-to-CKD progression. Our findings offer new insight into the therapeutic potential of Mlb in preventing CKD progression following AKI and identify a previously unrecognized mechanism involving the KLF5/CDK1/Cyclin B1 pathway.
Collapse
Affiliation(s)
- Liyu Lin
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, PR China; Xiamen Clinical Quality Control Center of Nephrology, Xiamen, 361015, PR China
| | - Daoqi Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Yiqi Su
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, PR China; Xiamen Clinical Quality Control Center of Nephrology, Xiamen, 361015, PR China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Jinbo Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Chenqi Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Kunming Pan
- Department of Pharmacy, Zhongshan Hospital Fudan University, Shanghai, 20032, PR China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, PR China; Xiamen Clinical Quality Control Center of Nephrology, Xiamen, 361015, PR China; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China.
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Kidney and Dialysis Institute of Shanghai, Shanghai, 200032, PR China; Shanghai Medical Center for Kidney Diseases, Shanghai, 200032, PR China; Shanghai Key Laboratory for Kidney Diseases and Blood Purification, Shanghai, 200032, PR China.
| |
Collapse
|
4
|
He L, Edi S, Ma J, Kong Z, Dai C, Huang L, Zeng R, Gou K. Prevention and treatment of radiation injury by traditional Chinese medicine: A review. CHINESE HERBAL MEDICINES 2025; 17:220-234. [PMID: 40256708 PMCID: PMC12009072 DOI: 10.1016/j.chmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 04/22/2025] Open
Abstract
Nuclear radiation exposure events and tumor radiotherapy are highly susceptible to a range of psychological, physiological and other health problems, which can seriously affect patients' quality of life. It has been shown that 87.5 % of tumor patients are exposed to varying degrees of radiation injury during radiotherapy. The treatment of radiation injury (RI) in modern medicine is limited to drug therapy, cell therapy, etc. Among them, the most chemical drugs cause many adverse reactions including fatigue, nausea, vomiting, etc., and there are very few drugs dedicated to the treatment of RI. Traditional Chinese medicine (TCM) is a rich natural medicinal resource, which has a wide range of pharmacological activities, multiple targets of action and minimal toxic side effects. Many studies have demonstrated that TCM and its compound preparations have enormous potential in the treatment of radiation induced comprehensive diseases. However, TCM is limited in clinical application due to its slow onset of action, complex active ingredients, and low bioavailability. Therefore, the article reviews the application, molecular mechanisms, and new dosage forms of TCM in the prevention and treatment of RI. On this basis, we will focus on discussing the development advantages and application prospects of the combination of traditional Chinese and Western medicine to achieve highly efficient treatment of RI. This review aims to provide scientific and effective drug delivery strategies and basic theoretical support for the clinical effective treatment of RI with TCM, and further promote the innovative development of TCM.
Collapse
Affiliation(s)
- Lixue He
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Shixing Edi
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Jun Ma
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zilin Kong
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Chunguang Dai
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation of National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Rui Zeng
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Kaijun Gou
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
5
|
Li CL, Zhang YX, Zheng XJ, Li S, Feng J. The traditional Chinese medicine formula Zhihan Anshen Tang (ZHAST) against obstructive sleep apnea hypopnea syndrome: network pharmacology and molecular docking approach. Front Chem 2025; 13:1524087. [PMID: 40129771 PMCID: PMC11931058 DOI: 10.3389/fchem.2025.1524087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/28/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction The current treaments for Obstructive Sleep Apnea Hypopnea (OSAHS) are Continuous Positive Airway Pressure (CPAP) and lifestyle modifications, which is not suitable for all patients. Traditional Chinese medicine (TCM) has increasingly demonstrated its efficacy and benefits in treating OSAHS. Zhihan Anshen Tang (ZHAST), has been demonstrated its efficacy and clinical metrics for treating OSAHS patients. However, its key ingredients and mechanisms of action are still unknown. Methods Using network pharmacology, we investigated the potential mechanisms of ZHAST through which OSAHS. Results In addition, the key targets, including TNF, IL6, GAPDH, STAT3, HIF1A, and JUN, are revealed by the topological analysis. According to the findings of the GO enrichment analysis, genes were enriched in inflammatory responses, hypoxia responses, positive regulation of angiogenesis, protein phosphorylation, and regulation of cell proliferation. KEGG pathway enrichment analysis suggests that the signaling pathway of ZHAST in OSAHS are MAPK and AGE-RAGE signaling pathway, especially in diabetic complications. In addition, it is demonstrated that the enoxolone in ZHASTs have high affinity with the relevant targets by molecular docking and molecular dynamics simulations. Disscussion To my knowledge, this is the first network pharmacological molecular docking study about a Chinese medicine effective against OSA. This investigation integrates molecular docking and network pharmacology to identify the effective compounds, related targets, and potential mechanism of ZHASTs in the treatment of OSAHS, providing the prospect of traditional Chinese medicines with modern medical research.
Collapse
Affiliation(s)
- Cai-Li Li
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Xiang Zhang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing-Jie Zheng
- Infectious Disease Department, Tianjin Haihe Hospital, Tianjin, China
| | - Shuo Li
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Guo L, Han L, Zhang J, Shen M, Li J, Zhang K, Chen R, Liu H. HMGB1 mediates epithelial-mesenchymal transition and fibrosis in silicosis via RAGE/β-catenin signaling. Chem Biol Interact 2025; 408:111385. [PMID: 39800143 DOI: 10.1016/j.cbi.2025.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure. Here, we observed that HMGB1 protein was increased in the serum of silicosis patients and in the lung tissues of silicotic mice. The levels of HMGB1, receptor for advanced glycation end products (RAGE) and β-catenin protein were increased in the alveolar EMT cell model established by the treatment of transforming growth factor β1 (TGF-β1) and conditioned mediums derived from silica-stimulated macrophages. The activation of HMGB1, RAGE, β-catenin, EMT process, as well as cell migration triggered by TGF-β1 in RLE-6TN cells could be enhanced by treatment with recombinant HMGB1 protein (rHMGB1) and decreased by HMGB1 chemical inhibitor glycyrrhizin or RAGE inhibitor FPS-ZM1. And RAGE suppression could alleviate HMGB1-mediated the aggravation of β-catenin signaling, cell migration and EMT process induced by TGF-β1. Furthermore, both HMGB1 inhibition and RAGE knockout effectively alleviated the lung function impairment, EMT process, pulmonary inflammation and fibrosis in silicotic mice. These findings suggested that HMGB1 might promote EMT through RAGE/β-catenin axis in silicosis. And HMGB1 might constitute a therapeutic target for ameliorating the fibrosis of silicosis.
Collapse
Affiliation(s)
- Lingli Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China; Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Lu Han
- Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Jing Zhang
- LinYi Center for Disease Control and Prevention, LinYi, Shangdong, 276000, China
| | - Mengyao Shen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Jiacheng Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Kuijie Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Ruru Chen
- Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Heliang Liu
- Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
7
|
Liang J, Zhao J, Yang L, Wang Q, Liao J, Li J, Zhuang W, Li F, He J, Tang Y, Chen H, Huang C. MSC-exosomes pretreated by Danshensu extracts pretreating to target the hsa-miR-27a-5p and STAT3-SHANK2 to enhanced antifibrotic therapy. Stem Cell Res Ther 2025; 16:40. [PMID: 39901236 PMCID: PMC11792327 DOI: 10.1186/s13287-025-04181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a serious complication commonly associated with prolonged peritoneal dialysis. Mesenchymal stem cells (MSCs) and their exosomes (Exo) have shown significant therapeutic promise in treating fibrotic conditions. Danshensu (DSS), a bioactive compound from the traditional Chinese herb Danshen reverses fibrosis. This study aims to investigate a novel strategy to enhance the therapeutic efficacy against PF by DSS preconditioning MSCs-derived exosomes (DSS-Exo). METHODS The in vitro studies included the effects of DSS duration on MSCs, and the characterization of DSS-Exo and Exo, followed by the assessment of RNA and protein expression levels of peritoneal fibrosis markers and inflammatory cytokines levels after treating human peritoneal mesothelial (HMrSV5) cells. In vivo experiments were conducted on a PF mouse model to observe cell morphology, collagen deposition, fibrosis localization, and to evaluate peritoneal functions such as filtration rate, urea nitrogen clearance, peritoneal thickness, and protein leakage. Mechanistic insights were gained through the analysis of the STAT3/HIF-1α/VEGF signaling pathway, tissue dual-fluorescence localization,chromatin immunoprecipitation sequencing (ChIP-seq), and dual-luciferase reporter (DLR) assays. Additionally, the differential expression of miRNAs between DSS-Exo and Exo was explored and validation of key miRNA. RESULTS DSS-Exo significantly upregulated E-cadherin, downregulated VEGFA, α-SMA, CTGF and Fibronectin expression in HMrSV5 cells compared to untreated Exo. In vivo studies revealed that DSS-Exo enhanced the ability of Exo to improve peritoneal function,such as the peritoneal filtration rate and urea nitrogen, glucose clearance, while reducing peritoneal thickness and protein leakage, and cell morphology, reduce collagen deposition, and decrease the degree of fibrosis. Mechanistically, these exosomes inhibited the STAT3/HIF-1α/VEGF signaling pathway within peritoneal mesothelial tissues. Furthermore, ChIP-seq and DLR demonstrated that DSS-Exo affected STAT3 directly binds to SHANK2 promoter regions, forming hydrogen bonds between 5 key amino acids such as GLN-344, HIS-332 and 6 key bases such as DG-258, DG-261. miRNA profiling identified DSS-Exo increased hsa-miR-27a-5p_R-1 to regulated STAT3-SHANK2 and modulating the EMT. CONCLUSION This study highlighted the innovative use of Danshensu in enhancing MSC-derived exosome therapy for PF. The identification of the hsa-miR-27a-5p_R-1-STAT3-SHANK2 axis may reveal new molecular mechanisms underlying fibrosis, further research is needed to fully elucidate its impact on PF. The integration of Danshensu from traditional Chinese medicine into modern MSC exosome therapy represents a promising frontier in the development of novel treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Jiabin Liang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxiu Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Laboratory Science, ShunDe Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jianhao Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhao Zhuang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fanghong Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxian He
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yukuan Tang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwei Chen
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Panyu Health Management Center, Guangzhou, 511400, China.
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Medical Imaging Institute of Panyu, Guangzhou, 511400, China.
| |
Collapse
|
8
|
Wang X, Zhang K, Zhang J, Xu G, Guo Z, Lu X, Liang C, Gu X, Huang L, Liu S, Wang L, Li J. Cordyceps militaris solid medium extract alleviates lipopolysaccharide-induced acute lung injury via regulating gut microbiota and metabolism. Front Immunol 2025; 15:1528222. [PMID: 39902053 PMCID: PMC11788161 DOI: 10.3389/fimmu.2024.1528222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Acute lung injury (ALI) is a common respiratory disease, Cordycepin has been reported to reduce ALI, which is an effective component in Cordyceps militaris solid medium extract (CMME). Therefore, we aimed to explore the alleviating effect and mechanism of CMME on ALI. This study evaluated the effect of CMME on lipopolysaccharide (LPS)-induced ALI mice by analyzing intestinal flora and metabolomics to explore its potential mechanism. We assessed pulmonary changes, inflammation, oxidative stress, and macrophage and neutrophil activation levels, then we analyzed the gut microbiota through 16S rRNA and analyzed metabolomics profile by UPLC-QTOF/MS. The results showed that CMME treatment improved pulmonary injury, reduced inflammatory factors and oxidative stress levels, and decreased macrophage activation and neutrophil recruitment. The 16S rRNA results revealed that CMME significantly increased gut microbiota richness and diversity and reduced the abundance of Bacteroides compared with Mod group significantly. Metabolic analysis indicated that CMME reversed the levels of differential metabolites and may ameliorate lung injury through purine metabolism, nucleotide metabolism, and bile acid (BA) metabolism, and CMME did reverse the changes of BA metabolites in ALI mice, and BA metabolites were associated with inflammatory factors and intestinal flora. Therefore, CMME may improve lung injury by regulating intestinal flora and correcting metabolic disorders, providing new insights into its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lei Wang
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianxi Li
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Chen G, Zhang Y, Zhou Y, Luo H, Guan H, An B. Targeting the mTOR Pathway in Hepatocellular Carcinoma: The Therapeutic Potential of Natural Products. J Inflamm Res 2024; 17:10421-10440. [PMID: 39659752 PMCID: PMC11630751 DOI: 10.2147/jir.s501270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Despite advancements in cancer treatment through surgery and drugs, hepatocellular carcinoma (HCC) remains a significant challenge, as reflected by its low survival rates. The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in regulating the cell cycle, proliferation, apoptosis, and metabolism. Notably, dysregulation leading to the activation of the mTOR signaling pathway is common in HCC, making it a key focus for in-depth research and a target for current therapeutic strategies. This review focuses on the role of the mTOR signaling pathway and its downstream effectors in regulating HCC cell proliferation, apoptosis, autophagy, cell cycle, and metabolic reprogramming. Moreover, it emphasizes the potential of natural products as modulators of the mTOR signaling pathway. When incorporated into combination therapies, these natural products have been demonstrated to augment therapeutic efficacy and surmount drug resistance. These products target key signaling pathways such as mTOR signaling pathways. Examples include 11-epi-sinulariolide acetate, matrine, and asparagus polysaccharide. Their inhibitory effects on these processes suggest valuable directions for the development of more effective HCC therapeutic strategies. Various natural products have demonstrated the ability to inhibit mTOR signaling pathway and suppress HCC progression. These phytochemicals, functioning as mTOR signaling pathway inhibitors, hold great promise as potential anti-HCC agents, especially in the context of overcoming chemoresistance and enhancing the outcomes of combination therapies.
Collapse
Affiliation(s)
- Guo Chen
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Ya Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Yaqiao Zhou
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hao Luo
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hongzhi Guan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Baiping An
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
10
|
Zhang Z, Cui Y, Zhang X, Hu X, Li S, Li T. Gut microbiota combined with serum metabolites to reveal the effect of Morchella esculenta polysaccharides on lipid metabolism disordered in high-fat diet mice. Int J Biol Macromol 2024; 281:136380. [PMID: 39389515 DOI: 10.1016/j.ijbiomac.2024.136380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The ameliorating effects and mechanisms of Morchella esculenta polysaccharides (MEP-1) on lipid metabolism were investigated in high-fat diet (HFD) mice. The results showed that MEP-1 intervention significantly reduced serum TC, TG, LDL-C, and inflammatory factors (TNF-α, IL-1β and IL-6) in HFD mice in a dose-dependent manner, and high-dose (400 mg/kg/d) exhibited the most significant reductive effects. In addition, MEP-1 significantly recovered the gut microbiota disorders caused by HFD, especially decreasing the ratio of Firmicutes and Bacteroidetes (F/B) and increasing the dominant bacterial of Muribaculaceae_genus, Bacteroides, Alistipes and Enterococcus. Moreover, MEP-1 promoted the production of SCFAs and increased the expression levels of Occludin, Claudin and Muc2, also regulated lipid metabolism disorder and inflammation by inhibiting TLR4/MyD88/NF-κB via the gut-liver axis. In addition, serum metabolomic analysis revealed that l-phenylalanine, l-arginine and acetylcholine were significantly upregulated with MEP-1 intervention, and were negatively correlated with blood lipid level, in which l-arginine could activate NO/PPARα/CPT1A pathway to ameliorate lipid metabolism disorders. Such results demonstrated that gut microbiota, amino acid metabolic and insulin secretion pathways might be the important factors that mediated the regulation of MEP-1 in lipid metabolism. The results also provided new evidence and strategies for the application of MEP-1 as functional foods.
Collapse
Affiliation(s)
- Zuoyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
11
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
12
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
13
|
Li L, Li Z, Peng Y, Fu Y, Zhang R, Wen J, Wang J. Bletilla striata polysaccharide alleviates chronic obstructive pulmonary disease via modulating gut microbiota and NR1H4 expression in mice. Microb Pathog 2024; 193:106767. [PMID: 38945459 DOI: 10.1016/j.micpath.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Bletilla striata polysaccharide (BSP) is the main component of Bletilla striata and has been revealed to enhance immune responses. Chronic obstructive pulmonary disease (COPD) results from the chronic inhalation of toxic particles and gases, which initiates innate and adaptive immune responses in the lungs. This study aimed to evaluate whether the effects of BSP on COPD were related to the abundance of gut microbiota and explored the underlying mechanism. COPD mice were induced with cigarette smoke and human bronchial epithelial cells (HBEC) were subjected to cigarette smoke extract (CSE) for in vitro studies. BSP alleviated the inflammatory response and the inflammatory cell infiltration in lung tissues and promoted the recovery of respiratory function in COPD mice. BSP mitigated CSE-induced HBEC injury by repressing inflammation and oxidative stress. 16s rRNA sequencing revealed that BSP increased the abundance of Bacteroides intestinalis. Bacteroides intestinalis colonization enhanced the therapeutic effect of BSP in COPD mice by upregulating NR1H4 and its encoded protein FXR. Reduction of NR1H4 impaired the therapeutic impact of BSP and Bacteroides intestinalis in COPD. These data demonstrate that BSP inhibits COPD by upregulating NR1H4 through Bacteroides intestinalis, which underpins the application of BSP as a therapeutic agent for COPD.
Collapse
Affiliation(s)
- Liang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center of Respiratory Diseases, Haikou, 570100, Hainan, PR China
| | - Zhaoguo Li
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, PR China
| | - Yuqiu Peng
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Yunli Fu
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Ranzhi Zhang
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Jiexiang Wen
- The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China
| | - Jie Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center of Respiratory Diseases, Haikou, 570100, Hainan, PR China; The First Clinical College, Hainan Medical University, Haikou, 571199, Hainan, PR China.
| |
Collapse
|
14
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Xiao J, Chen C, Fu Z, Wang S, Luo F. Assessment of the Safety and Probiotic Properties of Enterococcus faecium B13 Isolated from Fermented Chili. Microorganisms 2024; 12:994. [PMID: 38792822 PMCID: PMC11123876 DOI: 10.3390/microorganisms12050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Enterococcus faecium B13, selected from fermentation chili, has been proven to promote animal growth by previous studies, but it belongs to opportunistic pathogens, so a comprehensive evaluation of its probiotic properties and safety is necessary. In this study, the probiotic properties and safety of B13 were evaluated at the genetic and phenotype levels in vitro and then confirmed in vivo. The genome of B13 contains one chromosome and two plasmids. The average nucleotide identity indicated that B13 was most closely related to the fermentation-plant-derived strain. The strain does not carry the major virulence genes of the clinical E. faecium strains but contains aac(6')-Ii, ant (6)-Ia, msrC genes. The strain had a higher tolerance to acid at pH 3.0, 4.0, and 0.3% bile salt and a 32.83% free radical DPPH clearance rate. It can adhere to Caco-2 cells and reduce the adhesion of E. coli to Caco-2 cells. The safety assessment revealed that the strain showed no hemolysis and did not exhibit gelatinase, ornithine decarboxylase, lysine decarboxylase, or tryptophanase activity. It was sensitive to twelve antibiotics but was resistant to erythromycin, rifampicin, tetracycline, doxycycline, and minocycline. Experiments in vivo have shown that B13 can be located in the ileum and colon and has no adverse effects on experiment animals. After 28 days of feeding, B13 did not remarkable change the α-diversity of the gut flora or increase the virulence genes. Our study demonstrated that E. faecium B13 may be used as a probiotic candidate.
Collapse
Affiliation(s)
- Jingmin Xiao
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Cai Chen
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Zhuxian Fu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Shumin Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| | - Fan Luo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
16
|
Zhao H, Mo Q, Kulyar MFEA, Guan J, Zhang X, Luo X, Li J. Metagenomic Analysis Reveals A Gut Microbiota Structure and Function Alteration between Healthy and Diarrheic Juvenile Yaks. Animals (Basel) 2024; 14:1181. [PMID: 38672329 PMCID: PMC11047321 DOI: 10.3390/ani14081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Diarrhea-induced mortality among juvenile yaks is highly prevalent in the pastoral areas of the Qinghai-Tibet plateau. Although numerous diseases have been linked to the gut microbial community, little is known about how diarrhea affects the gut microbiota in yaks. In this work, we investigated and compared changes in the gut microbiota of juvenile yaks with diarrhea. The results demonstrated a considerable drop in the alpha diversity of the gut microbiota in diarrheic yaks, accompanied by Eysipelatoclostridium, Parabacteroides, and Escherichia-Shigella, which significantly increased during diarrhea. Furthermore, a PICRust analysis verified the elevation of the gut-microbial metabolic pathways in diarrhea groups, including glycine, serine, and threonine metabolism, alanine, aspartate, oxidative phosphorylation, glutamate metabolism, antibiotic biosynthesis, and secondary metabolite biosynthesis. Taken together, our study showed that the harmful bacteria increased, and beneficial bacteria decreased significantly in the gut microbiota of yaks with diarrhea. Moreover, these results also indicated that the dysbiosis of the gut microbiota may be a significant driving factor of diarrhea in yaks.
Collapse
Affiliation(s)
- Hongwen Zhao
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.M.); (M.F.-e.-A.K.)
| | | | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China; (H.Z.); (J.G.); (X.Z.)
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.M.); (M.F.-e.-A.K.)
| |
Collapse
|
17
|
Huang X, Hu X, Li S, Li T. Vitexin-rhamnoside encapsulated with zein-pectin nanoparticles relieved high-fat diet induced lipid metabolism disorders in mice by altering the gut microbiota. Int J Biol Macromol 2024; 264:130704. [PMID: 38460630 DOI: 10.1016/j.ijbiomac.2024.130704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
This study aimed to investigate the modulatory effects of Vitexin-rhamnoside (VR) and Zein-VR-pectin nanoparticles (VRN) on lipid metabolism disorders induced by high-fat diet (HFD). The ingestion of VR or VRN attenuated dyslipidemia and fat accumulation in HFD mice, and improved intestinal dysbiosis by regulating the relative abundance of dominant bacteria, alleviating chronic inflammation and hepatic injury in HFD mice. The intervention effect of VRN was significantly higher than that of VR. After fecal microbiota transplantation (FMT) treatment, the fecal microbiota of VRN-treated donor mice significantly attenuated the symptoms associated with hyperlipidemia, confirming that VRN ameliorates HFD-induced disorders of lipid metabolism by modulating the gut microbiota, especially increasing the abundance of Rombousia and Faecalibaculum. Overall, VRN can regulate the gut microbiota and thus improve lipid metabolism. The present study provided new evidence that nanoparticles enhance the bioavailability of food bioactive ingredients.
Collapse
Affiliation(s)
- Xin Huang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
18
|
Guo J, Wang L, Han N, Yuan C, Yin Y, Wang T, Sun J, Jin P, Liu Y, Jia Z. People are an organic unity: Gut-lung axis and pneumonia. Heliyon 2024; 10:e27822. [PMID: 38515679 PMCID: PMC10955322 DOI: 10.1016/j.heliyon.2024.e27822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Yujie Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| |
Collapse
|
19
|
Cheng X, Chen J, Guo X, Cao H, Zhang C, Hu G, Zhuang Y. Disrupting the gut microbiota/metabolites axis by Di-(2-ethylhexyl) phthalate drives intestinal inflammation via AhR/NF-κB pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123232. [PMID: 38171427 DOI: 10.1016/j.envpol.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jinyan Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
20
|
Pan H, Song D, Wang Z, Yang X, Luo P, Li W, Li Y, Gong M, Zhang C. Dietary modulation of gut microbiota affects susceptibility to drug-induced liver injury. Gut Microbes 2024; 16:2439534. [PMID: 39673542 DOI: 10.1080/19490976.2024.2439534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
The rising incidence of drug-induced liver injury (DILI) parallels contemporary dietary shifts that have transformed the composition of human gut microbiota. The relationship between these phenomena remains unknown. Here, it is unveiled that a high fiber diet (HFiD) provides substantial protection against DILI, whereas a western style diet (WSD) significantly exacerbates DILI. Gut microbiota transplantation further confirms these differing outcomes are mediated by diet-induced variations in gut microbiota. Mechanistically, Lactobacillus acidophilus, enriched by HFiD, alleviates DILI through its metabolite indole-3-lactic acid (ILA), which activates the AhR/Nrf2 signaling pathway, thus enhancing hepatocellular antioxidant defenses and detoxification capacity. In the clinical intervention of subjects with prediabetes (N = 330), dietary fiber intervention enriches intestinal L. acidophilus, elevates serum ILA levels, and improves liver function. Conversely, WSD induces disturbance in bile acid metabolism and dysbiosis in gut microbiota, which impairs the intestinal barrier and facilitates the translocation of lipopolysaccharides (LPS) to the liver, thus triggering inflammatory responses and exacerbating DILI. These results demonstrate that dietary patterns significantly influence the onset of DILI by modulating gut microbiota. This novel insight expands the understanding of DILI risk factors and highlights the potential of dietary modifications as a preventive strategy against DILI.
Collapse
Affiliation(s)
- Han Pan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Delei Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyi Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Gu L, Wang W, Gu Y, Cao J, Wang C. Metabolomic Signatures Associated with Radiation-Induced Lung Injury by Correlating Lung Tissue to Plasma in a Rat Model. Metabolites 2023; 13:1020. [PMID: 37755300 PMCID: PMC10536118 DOI: 10.3390/metabo13091020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
The lung has raised significant concerns because of its radiosensitivity. Radiation-induced lung injury (RILI) has a serious impact on the quality of patients' lives and limits the effect of radiotherapy on chest tumors. In clinical practice, effective drug intervention for RILI remains to be fully elucidated. Therefore, an in-depth understanding of the biological characteristics is essential to reveal the mechanisms underlying the complex biological processes and discover novel therapeutic targets in RILI. In this study, Wistar rats received 0, 10, 20 or 35 Gy whole-thorax irradiation (WTI). Lung and plasma samples were collected within 5 days post-irradiation. Then, these samples were processed using liquid chromatography-mass spectrometry (LC-MS). A panel of potential plasma metabolic markers was selected by correlation analysis between the lung tissue and plasma metabolic features, followed by the evaluation of radiation injury levels within 5 days following whole-thorax irradiation (WTI). In addition, the multiple metabolic dysregulations primarily involved amino acids, bile acids and lipid and fatty acid β-oxidation-related metabolites, implying disturbances in the urea cycle, intestinal flora metabolism and mitochondrial dysfunction. In particular, the accumulation of long-chain acylcarnitines (ACs) was observed as early as 2 d post-WTI by dynamic plasma metabolic data analysis. Our findings indicate that plasma metabolic markers have the potential for RILI assessment. These results reveal metabolic characteristics following WTI and provide new insights into therapeutic interventions for RILI.
Collapse
Affiliation(s)
| | | | | | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren’ai Road 199, Suzhou 215123, China; (L.G.); (W.W.); (Y.G.)
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren’ai Road 199, Suzhou 215123, China; (L.G.); (W.W.); (Y.G.)
| |
Collapse
|