1
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
2
|
Takahashi N, Nagai S, Tomimatsu Y, Saito A, Kaneta N, Tsujimoto Y, Tamura H. Simultaneous Discrimination of Cereulide-Producing Bacillus cereus and Psychrotolerant B. cereus Group by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. J Food Prot 2022; 85:1192-1202. [PMID: 35687734 DOI: 10.4315/jfp-21-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to discriminate the cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains are needed. We developed a novel, rapid, and simple method with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis for simultaneous discrimination of these two groups from other B. cereus group strains. A potassium adduct of cereulide was used to detect cereulide-producing B. cereus, and three ribosomal subunit proteins (L30, S16, and S20) were used to detect psychrotolerant B. cereus group. A total of 51 B. cereus group strains were analyzed by MALDI-TOF MS. The biomarkers allowed successful discrimination of 16 cereulide-producing B. cereus and 15 psychrotolerant B. cereus group strains from other B. cereus group strains. The results showed that this MALDI-TOF MS analysis allows simultaneous discrimination of cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains. This efficient method has the potential to be a valuable tool for ensuring food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Naomi Takahashi
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Satomi Nagai
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yumiko Tomimatsu
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Ayumi Saito
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Naoko Kaneta
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Yoshinori Tsujimoto
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Hiroto Tamura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
3
|
MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology. Adv Pharmacol Pharm Sci 2021; 2021:9928238. [PMID: 34041492 PMCID: PMC8121603 DOI: 10.1155/2021/9928238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
There is a range of proteomics methods to spot and analyze bacterial protein contents such as liquid chromatography-mass spectrometry (LC-MS), two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), which give comprehensive information about the microorganisms that may be helpful within the diagnosis and coverings of infections. Microorganism identification by mass spectrometry is predicted on identifying a characteristic spectrum of every species so matched with an outsized database within the instrument. MALDI-TOF MS is one of the diagnostic methods, which is a straightforward, quick, and precise technique, and is employed in microbial diagnostic laboratories these days and may replace other diagnostic methods. This method identifies various microorganisms such as bacteria, fungi, parasites, and viruses, which supply comprehensive information. One of the MALDI-TOF MS's crucial applications is bacteriology, which helps identify bacterial species, identify toxins, and study bacterial antibiotic resistance. By knowing these cases, we will act more effectively against bacterial infections.
Collapse
|
4
|
Takahashi N, Nagai S, Fujita A, Ido Y, Kato K, Saito A, Moriya Y, Tomimatsu Y, Kaneta N, Tsujimoto Y, Tamura H. Discrimination of psychrotolerant Bacillus cereus group based on MALDI-TOF MS analysis of ribosomal subunit proteins. Food Microbiol 2020; 91:103542. [PMID: 32539947 DOI: 10.1016/j.fm.2020.103542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
Abstract
Psychrotolerant species of the Bacillus cereus group, Bacillus mycoides and Bacillus weihenstephanensis, can grow at ≥ 7 °C and are significant concerns for the food industry due to their ability to cause spoilage of refrigerated food. In addition to that, some strains of B. weihenstephanensis can produce emetic toxin, namely cereulide, which is known to cause vomiting. Therefore, rapid and simple methods to discriminate psychrotolerant B. cereus group species are crucial. Here, matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) method were used to discriminate psychrotolerant species of the B. cereus group based on a set of four ribosomal subunit proteins (S10, S16, S20 and L30). A total of 36 strains of B. cereus group were cultured on LB agar, and analyzed by MALDI-TOF MS. The four biomarkers successfully discriminated 12 strains of psychrotolerant species from mesophilic species of the B. cereus group. Furthermore, the four biomarkers also classified some Bacillus thuringiensis strains. MALDI-TOF MS analysis using the S10-GERMS method allowed simple and rapid discrimination of psychrotolerant species of the B. cereus group from other mesophilic species. This method has a possibility to enable manufacturers and distributors of refrigerated foods to control psychrotolerant species of the B. cereus group effectively.
Collapse
Affiliation(s)
- Naomi Takahashi
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan.
| | - Satomi Nagai
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Akane Fujita
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yousuke Ido
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kenji Kato
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Ayumi Saito
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yuka Moriya
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yumiko Tomimatsu
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Naoko Kaneta
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yoshinori Tsujimoto
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Hiroto Tamura
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
5
|
Velichko NV, Pinevich AV. Classification and Identification Tasks in Microbiology: Mass Spectrometric Methods Coming to the Aid. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Reliable identification of lactic acid bacteria by targeted and untargeted high-resolution tandem mass spectrometry. Food Chem 2019; 285:111-118. [DOI: 10.1016/j.foodchem.2019.01.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
|
7
|
Sun LW, Jiang WJ, Zhang JY, Wang WQ, Du Y, Sato H, Kawachi M, Yu R. Identification and detection sensitivity of Microcystis aeruginosa from mixed and field samples using MALDI-TOF MS. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:712. [PMID: 30415457 DOI: 10.1007/s10661-018-7093-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
To verify the applicability of identifying Microcystis aeruginosa by matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS), mixed and field samples were employed to study the sensitivity and the analysis power, respectively. Series diluted samples and artificially mixed samples by the M. aeruginosa NIES-843 strain were designed to verify the sensitivity. The lowest detection limit was 1.955 × 106 cells in pure samples, while for mixed samples, the lowest detection limit and ratio of NIES-843 strain were 2.88 × 106 cells and 33.7%, respectively. The results provided a reference for the reasonable volume of the water sample in which the M. aeruginosa could be detected. Ribosomal protein biomarkers for identifying M. aeruginosa which were successfully detected from the field samples in Taihu Lake, indicated that the identification of M. aeruginosa by MALDI-TOF MS could be applied in field samples. Furthermore, different genetic types of M. aeruginosa strains were also detected at different locations in Taihu Lake, which revealed the diversity of M. aeruginosa and the detection power of MALDI-TOF MS at the strain level for the field samples. The sensitivity and detection power in the analysis of M. aeruginosa by the MALDI-TOF MS demonstrated the applicability of this method in routine environmental monitoring.
Collapse
Affiliation(s)
- Li-Wei Sun
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China.
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China.
| | - Wen-Jing Jiang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Jun-Yi Zhang
- Wuxi Environmental Monitoring Center, Wuxi, Jiangsu, China
| | - Wen-Qian Wang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Yang Du
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Hiroaki Sato
- Polymer Chemistry Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Masanobu Kawachi
- Biodiversity Resource Conservation Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Ran Yu
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China.
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China.
| |
Collapse
|
8
|
Horie M, Sato H, Tada A, Nakamura S, Sugino S, Tabei Y, Katoh M, Toyotome T. Regional characteristics of Lactobacillus plantarum group strains isolated from two kinds of Japanese post-fermented teas, Ishizuchi-kurocha and Awa-bancha. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2018; 38:11-22. [PMID: 30705798 PMCID: PMC6343053 DOI: 10.12938/bmfh.18-005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
Abstract
Properties of Lactobacillus plantarum group strains isolated from two kinds of Japanese post-fermented teas, Ishizuchi-kurocha and Awa-bancha, were compared. Although
lactic acid bacteria isolated from the fermented teas were identified as L. plantarum via homology comparison of 16S ribosomal RNA gene sequences, classification of
L. plantarum based on ribosomal proteins showed that the strains isolated from Ishizuchi-kurocha and Awa-bancha were different. According to classification by the
ribosomal protein typing, Ishizuchi-kurocha-derived strains belong to the same group as L. plantarum subsp. plantarum JCM 1149T.
Awa-bancha-derived strains were assigned to a different group. This pattern was also applicable to strains isolated more than 10 years ago. A further analysis based on recA
and a dnaK gene showed that Awa-bancha-derived strains were closely related to L. pentosus. The interactions with cultured cells were different between
strain JCM 1149T and the Ishizuchi-kurocha-derived strains. The Ishizuchi-kurocha-derived strains showed strong adhesion to Caco-2 cells. In contrast, strain JCM 1149T
and the Awa-bancha-derived strains hardly adhered to Caco-2 cells. According to the ribosomal protein typing, sugar utilization, and interaction with Caco-2 cells, although these properties
were dependent on the strain strictly speaking, the L. plantarum group strains in this study can be subdivided into two groups: (1) type strain JCM 1149T and
Ishizuchi-kurocha-derived strains and (2) Awa-bancha-derived strains. A regionally unique microorganism may persist in each traditional fermented drink.
Collapse
Affiliation(s)
- Masanori Horie
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-Cho, Takamatsu, Kagawa, Japan
| | - Hiroaki Sato
- Reserch Institute for Sustainable Chemistry, AIST, 1-1-1 Higashi, Tsukuba, Japan
| | - Atsumi Tada
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-Cho, Takamatsu, Kagawa, Japan
| | - Sayaka Nakamura
- Reserch Institute for Sustainable Chemistry, AIST, 1-1-1 Higashi, Tsukuba, Japan
| | - Sakiko Sugino
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-Cho, Takamatsu, Kagawa, Japan
| | - Yosuke Tabei
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-Cho, Takamatsu, Kagawa, Japan
| | - Miyuki Katoh
- Professor Emeritus of Kagawa University, 232-3 Donyu, Wakayama, Wakayama 640-8432, Japan
| | - Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
9
|
Nakamura S, Sato H, Tanaka R, Kusuya Y, Takahashi H, Yaguchi T. Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification and discrimination of Aspergillus species. BMC Microbiol 2017; 17:100. [PMID: 28441930 PMCID: PMC5405522 DOI: 10.1186/s12866-017-1009-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/12/2017] [Indexed: 11/10/2022] Open
Abstract
Background Accurate identification of Aspergillus species is a very important subject. Mass spectral fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is generally employed for the rapid identification of fungal isolates. However, the results are based on simple mass spectral pattern-matching, with no peak assignment and no taxonomic input. We propose here a ribosomal subunit protein (RSP) typing technique using MALDI-TOF MS for the identification and discrimination of Aspergillus species. The results are concluded to be phylogenetic in that they reflect the molecular evolution of housekeeping RSPs. Results The amino acid sequences of RSPs of genome-sequenced strains of Aspergillus species were first verified and compared to compile a reliable biomarker list for the identification of Aspergillus species. In this process, we revealed that many amino acid sequences of RSPs (about 10–60%, depending on strain) registered in the public protein databases needed to be corrected or newly added. The verified RSPs were allocated to RSP types based on their mass. Peak assignments of RSPs of each sample strain as observed by MALDI-TOF MS were then performed to set RSP type profiles, which were then further processed by means of cluster analysis. The resulting dendrogram based on RSP types showed a relatively good concordance with the tree based on β-tubulin gene sequences. RSP typing was able to further discriminate the strains belonging to Aspergillus section Fumigati. Conclusions The RSP typing method could be applied to identify Aspergillus species, even for species within section Fumigati. The discrimination power of RSP typing appears to be comparable to conventional β-tubulin gene analysis. This method would therefore be suitable for species identification and discrimination at the strain to species level. Because RSP typing can characterize the strains within section Fumigati, this method has potential as a powerful and reliable tool in the field of clinical microbiology. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1009-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sayaka Nakamura
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Reiko Tanaka
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| |
Collapse
|
10
|
Armengaud J. Defining Diagnostic Biomarkers Using Shotgun Proteomics and MALDI-TOF Mass Spectrometry. Methods Mol Biol 2017; 1616:107-120. [PMID: 28600764 DOI: 10.1007/978-1-4939-7037-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Whole-cell MALDI-TOF has become a robust and widely used tool to quickly identify any pathogen. In addition to being routinely used in hospitals, it is also useful for low cost dereplication in large scale screening procedures of new environmental isolates for environmental biotechnology or taxonomical applications. Here, I describe how specific biomarkers can be defined using shotgun proteomics and whole-cell MALDI-TOF mass spectrometry. Based on MALDI-TOF spectra recorded on a given set of pathogens with internal calibrants, m/z values of interest are extracted. The proteins which contribute to these peaks are deduced from label-free shotgun proteomics measurements carried out on the same sample. Quantitative information based on the spectral count approach allows ranking the most probable candidates. Proteogenomic approaches help to define whether these proteins give the same m/z values along the whole taxon under consideration or result in heterogeneous lists. These specific biomarkers nicely complement conventional profiling approaches and may help to better define groups of organisms, for example at the subspecies level.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostics", BP 17171, 30200, Bagnols-sur-Cèze, France.
| |
Collapse
|
11
|
Nakamura S, Sato H, Tanaka R, Yaguchi T. Verification of Ribosomal Proteins of Aspergillus fumigatus for Use as Biomarkers in MALDI-TOF MS Identification. ACTA ACUST UNITED AC 2016; 5:A0049. [PMID: 27843740 DOI: 10.5702/massspectrometry.a0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/26/2016] [Indexed: 11/23/2022]
Abstract
We have previously proposed a rapid identification method for bacterial strains based on the profiles of their ribosomal subunit proteins (RSPs), observed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method can perform phylogenetic characterization based on the mass of housekeeping RSP biomarkers, ideally calculated from amino acid sequence information registered in public protein databases. With the aim of extending its field of application to medical mycology, this study investigates the actual state of information of RSPs of eukaryotic fungi registered in public protein databases through the characterization of ribosomal protein fractions extracted from genome-sequenced Aspergillus fumigatus strains Af293 and A1163 as a model. In this process, we have found that the public protein databases harbor problems. The RSP names are in confusion, so we have provisionally unified them using the yeast naming system. The most serious problem is that many incorrect sequences are registered in the public protein databases. Surprisingly, more than half of the sequences are incorrect, due chiefly to mis-annotation of exon/intron structures. These errors could be corrected by a combination of in silico inspection by sequence homology analysis and MALDI-TOF MS measurements. We were also able to confirm conserved post-translational modifications in eleven RSPs. After these verifications, the masses of 31 expressed RSPs under 20,000 Da could be accurately confirmed. These RSPs have a potential to be useful biomarkers for identifying clinical isolates of A. fumigatus.
Collapse
Affiliation(s)
- Sayaka Nakamura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroaki Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST); Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Reiko Tanaka
- Medical Mycology Research Center, Chiba University
| | | |
Collapse
|
12
|
Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods 2016; 138:20-29. [PMID: 27613479 DOI: 10.1016/j.mimet.2016.09.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
The microbiological management of patients with suspected bacterial infection includes the identification of the pathogen and the determination of the antibiotic susceptibility. These traditional approaches, based on the pure culture of the microorganism, require at least 36-48h. A new method, Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS), has been recently developed to profile bacterial proteins from whole cell extracts and obtain a bacterial fingerprint able to discriminate microorganisms from different genera and species. By whole cell-mass spectrometry, microbial identification can be achieved within minutes from cultured isolate, rather than traditional phenotypic or genotypic characterizations. From the year 2009 an explosion of applications of this technology has been observed with promising results. Several studies have been performed and showed that MALDI-TOF represents a reliable alternative method for rapid bacteria and fungi identification in clinical setting. A future area of expansion is represented by the application of MALDI-TOF technology to the antibiotic susceptibility test. In conclusion, the revision of the literature available up to date demonstrated that MALDI-TOF MS represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates in clinical settings. By an earlier microbiological diagnosis, MALDI-TOF MS contributes to a reduced mortality and hospitalization time of the patients and consequently has a significant impact on cost savings and public health.
Collapse
Affiliation(s)
- Silvia Angeletti
- Clinical Pathology and Microbiology Unit, University Campus Bio-Medico of Rome, Italy.
| |
Collapse
|
13
|
Proteomics of survival structures of fungal pathogens. N Biotechnol 2016; 33:655-665. [DOI: 10.1016/j.nbt.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
|
14
|
Comparative Genomics Reveals Biomarkers to Identify Lactobacillus Species. Indian J Microbiol 2016; 56:265-76. [PMID: 27407290 DOI: 10.1007/s12088-016-0605-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Bacteria possessing multiple copies of 16S rRNA (rrs) gene demonstrate high intragenomic heterogeneity. It hinders clear distinction at species level and even leads to overestimation of the bacterial diversity. Fifty completely sequenced genomes belonging to 19 species of Lactobacillus species were found to possess 4-9 copies of rrs each. Multiple sequence alignment of 268 rrs genes from all the 19 species could be classified into 20 groups. Lactobacillus sanfranciscensis TMW 1.1304 was the only species where all the 7 copies of rrs were exactly similar and thus formed a distinct group. In order to circumvent the problem of high heterogeneity arising due to multiple copies of rrs, 19 additional genes (732-3645 nucleotides in size) common to Lactobacillus genomes, were selected and digested with 10 Type II restriction endonucleases (RE), under in silico conditions. The following unique gene-RE combinations: recA (1098 nts)-HpyCH4 V, CviAII, BfuCI and RsaI were found to be useful in identifying 29 strains representing 17 species. Digestion patterns of genes-ruvB (1020 nts), dnaA (1368 nts), purA (1290 nts), dnaJ (1140 nts), and gyrB (1944 nts) in combination with REs-AluI, BfuCI, CviAI, Taq1, and Tru9I allowed clear identification of an additional 14 strains belonging to 8 species. Digestion pattern of genes recA, ruvB, dnaA, purA, dnaJ and gyrB can be used as biomarkers for identifying different species of Lactobacillus.
Collapse
|
15
|
Sun LW, Jiang WJ, Sato H, Kawachi M, Lu XW. Rapid Classification and Identification of Microcystis aeruginosa Strains Using MALDI-TOF MS and Polygenetic Analysis. PLoS One 2016; 11:e0156275. [PMID: 27227555 PMCID: PMC4881969 DOI: 10.1371/journal.pone.0156275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was used to establish a rapid, simple, and accurate method to differentiate among strains of Microcystis aeruginosa, one of the most prevalent types of bloom-forming cyanobacteria. M. aeruginosa NIES-843, for which a complete genome has been sequenced, was used to characterize ribosomal proteins as biomarkers and to optimize conditions for observing ribosomal proteins as major peaks in a given mass spectrum. Thirty-one of 52 ribosomal subunit proteins were detected and identified along the mass spectrum. Fifty-five strains of M. aeruginosa from different habitats were analyzed using MALDI-TOF MS; among these samples, different ribosomal protein types were observed. A polygenetic analysis was performed using an unweighted pair-group method with arithmetic means and different ribosomal protein types to classify the strains into five major clades. Two clades primarily contained toxic strains, and the other three clades contained exclusively non-toxic strains. This is the first study to differentiate cyanobacterial strains using MALDI-TOF MS.
Collapse
Affiliation(s)
- Li-Wei Sun
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- * E-mail: (LWS); (HS)
| | - Wen-Jing Jiang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
| | - Hiroaki Sato
- Environmental Measurement Technology Group, Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- * E-mail: (LWS); (HS)
| | - Masanobu Kawachi
- Biodiversity Resource Conservation Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Xi-Wu Lu
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Puchalski A, Urban-Chmiel R, Dec M, Stęgierska D, Wernicki A. The use of MALDI-TOF mass spectrometry for rapid identification of Mannheimia haemolytica. J Vet Med Sci 2016; 78:1339-42. [PMID: 27109070 PMCID: PMC5053938 DOI: 10.1292/jvms.16-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mannheimia haemolytica is the most important bacterial pathogen isolated
from cases of Bovine Respiratory Disease (BRD). Routine identification of these bacteria
is usually performed using phenotypic methods. Our study showed that MALDI-TOF MS is a
reliable alternative to these methods. All of the strains analyzed were identified as
M. haemolytica. The identification results were compared to those
obtained using conventional methods commonly used in microbiological diagnostics, based on
detection and analysis of biochemical properties of microorganisms. The degree of
agreement between the two methods for identifying M. haemolytica was
100%.
Collapse
Affiliation(s)
- Andrzej Puchalski
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | | | | | | | | |
Collapse
|
17
|
Wei JP, Qiao B, Song WJ, Chen T, li F, Li BZ, Wang J, Han Y, Huang YF, Zhou ZJ. Synthesis of magnetic framework composites for the discrimination of Escherichia coli at the strain level. Anal Chim Acta 2015; 868:36-44. [PMID: 25813232 DOI: 10.1016/j.aca.2015.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
Abstract
Rapid and efficient characterization and identification of pathogens at the strain level is of key importance for epidemiologic investigations, which still remains a challenge. In this work, solvothermically Fe3O4-COOH@MIL-101 composites were fabricated by in situ crystallization approach. The composites combine the excellent properties of both chromium (III) terephthalate (MIL-101) and carboxylic-functionalized magnetite (Fe3O4-COOH) particles and possess the efficient peptides/proteins enrichment properties and magnetic responsiveness. Fe3O4-COOH@MIL-101 composites as magnetic solid phase extraction materials were used to increase the discriminatory power of MALDI-TOF MS profiles. BSA tryptic peptides at a low concentration of 0.25 fmol μL(-1) could be detected by MALDI-TOF MS. In addition, Fe3O4-COOH@MIL-101 composites were successfully applied in the selective enrichment of the protein biomarkers from bacterial cell lysates and discrimination of Escherichia coli at the strain level. This work provides the possibility for wide applications of magnetic MOFs to discriminate pathogens below the species level.
Collapse
Affiliation(s)
- Ji-Ping Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wen-Jun Song
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Tao Chen
- Tianjin Source Environment Technology & Engineering Co., Ltd., Tianjin 300190, China
| | - Fei li
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Bo-Zhi Li
- Tianjin Source Environment Technology & Engineering Co., Ltd., Tianjin 300190, China
| | - Jin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan-Feng Huang
- State Key Laboratory of Hollow Fiber Membrane Material and Membrane Process, College of Environmental and Chemical Engineering Sciences, Tianjin Polytechnic University, 399 West Binshui Road, Tianjin 300387, China; State Key Laboratory of Medicinal Chemical Biology (Nankai University), Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhi-Jiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
18
|
Bourassa L, Butler-Wu SM. MALDI-TOF Mass Spectrometry for Microorganism Identification. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, reliable, and high-throughput diagnostic tool for the identification of microorganisms. The technology is unique in clinical microbiology, allowing laboratories to definitively identify bacterial and fungal isolates within minutes. The rapid turnaround time and minimal cost for consumables per specimen compared with conventional identification methods have resulted in MALDI-TOF MS being increasingly used in clinical laboratories worldwide. This article summarizes the current literature on MALDI-TOF MS for microbial identification and provides a preview of the method's potential future applications in clinical microbiology.
Collapse
Affiliation(s)
- Tanis C Dingle
- Department of Laboratory Medicine, University of Washington Medical Center, Box 357110, 1959 Northeast Pacific Street, Seattle, WA 98195-7110, USA
| | | |
Collapse
|
20
|
Kuda T, Izawa Y, Yoshida S, Koyanagi T, Takahashi H, Kimura B. Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Tamura H, Hotta Y, Sato H. Novel accurate bacterial discrimination by MALDI-time-of-flight MS based on ribosomal proteins coding in S10-spc-alpha operon at strain level S10-GERMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1185-1193. [PMID: 23686278 DOI: 10.1007/s13361-013-0627-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/15/2013] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.
Collapse
Affiliation(s)
- Hiroto Tamura
- School of Agriculture, Meijo University, Shiogamaguchi, Tenpaku-ku, Nagoya, Japan,
| | | | | |
Collapse
|
22
|
Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. MASS SPECTROMETRY REVIEWS 2013; 32:188-217. [PMID: 22996584 DOI: 10.1002/mas.21359] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Since the advent of the use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) as a tool for microbial characterization, efforts to increase the taxonomic resolution of the approach have been made. The rapidity and efficacy of the approach have suggested applications in counter-bioterrorism, prevention of food contamination, and monitoring the spread of antibiotic-resistant bacteria. Strain-level resolution has been reported with diverse bacteria, using library-based and bioinformatics-enabled approaches. Three types of characterization at the strain level have been reported: strain categorization, strain differentiation, and strain identification. Efforts to enhance the library-based approach have involved sample pre-treatment and data reduction strategies. Bioinformatics approaches have leveraged the ever-increasing amount of publicly available genomic and proteomic data to attain strain-level characterization. Bioinformatics-enabled strategies have facilitated strain characterization via intact biomarker identification, bottom-up, and top-down approaches. Rigorous quantitative and advanced statistical analyses have fostered success at the strain level with both approaches. Library-based approaches can be limited by effects of sample preparation and culture conditions on reproducibility, whereas bioinformatics-enabled approaches are typically limited to bacteria, for which genetic and/or proteomic data are available. Biological molecules other than proteins produced in strain-specific manners, including lipids and lipopeptides, might represent other avenues by which strain-level resolution might be attained. Immunological and lectin-based chemistries have shown promise to enhance sensitivity and specificity. Whereas the limits of the taxonomic resolution of MALDI TOF MS profiling of bacteria appears bacterium-specific, recent data suggest that these limits might not yet have been reached.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85069, USA.
| | | | | |
Collapse
|
23
|
Sato H, Torimura M, Kitahara M, Ohkuma M, Hotta Y, Tamura H. Characterization of the Lactobacillus casei group based on the profiling of ribosomal proteins coded in S10-spc-alpha operons as observed by MALDI-TOF MS. Syst Appl Microbiol 2012; 35:447-54. [PMID: 23099260 DOI: 10.1016/j.syapm.2012.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/11/2012] [Accepted: 08/15/2012] [Indexed: 12/30/2022]
Abstract
The taxonomy of the members of the Lactobacillus casei group is complicated because of their phylogenetic similarity and controversial nomenclatural status. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of ribosomal proteins coded in the S10-spc-alpha operon, termed S10-GERMS, was applied in order to classify 33 sample strains belonging to the L. casei group. A total of 14 types of ribosomal protein genes coded in the operon were first sequenced from four type strains of the L. casei group (L. casei JCM 1134(T), L. paracasei subsp. paracasei JCM 8130(T), L. paracasei subsp. tolerans JCM 1171(T), and L. rhamnosus JCM 1136(T)) together with L. casei JCM 11302, which is the former type strain of 'L. zeae'. The theoretical masses of the 14 types of ribosomal proteins used as biomarkers were classified into five types and compiled into a ribosomal protein database. The observed ribosomal proteins of each strain, identified by MALDI-TOF MS, were categorized into types based on their masses, summarized as ribosomal protein profiles, and they were used to construct a phylogenetic tree. The 33 sample strains, together with seven genome-sequenced strains, could be classified into four major clusters, which coincided precisely with the taxa of the (sub)species within the L. casei group. Three "ancient" strains, identified as L. acidophilus and L. casei, were correctly re-identified as L. paracasei subsp. paracasei by S10-GERMS. S10-GERMS would thus appear to be a powerful tool for phylogenetic characterization, with considerable potential for management of culture collections.
Collapse
Affiliation(s)
- Hiroaki Sato
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Ziegler D, Mariotti A, Pflüger V, Saad M, Vogel G, Tonolla M, Perret X. In situ identification of plant-invasive bacteria with MALDI-TOF mass spectrometry. PLoS One 2012; 7:e37189. [PMID: 22615938 PMCID: PMC3355115 DOI: 10.1371/journal.pone.0037189] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues.
Collapse
Affiliation(s)
- Dominik Ziegler
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Mabritec AG, Riehen, Switzerland
| | - Anna Mariotti
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Institute of Microbiology, Bellinzona, Switzerland
| | | | - Maged Saad
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Mauro Tonolla
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Institute of Microbiology, Bellinzona, Switzerland
| | - Xavier Perret
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012; 36:380-407. [DOI: 10.1111/j.1574-6976.2011.00298.x] [Citation(s) in RCA: 608] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022] Open
|
26
|
Wang J, Chen WF, Li QX. Rapid identification and classification of Mycobacterium spp. using whole-cell protein barcodes with matrix assisted laser desorption ionization time of flight mass spectrometry in comparison with multigene phylogenetic analysis. Anal Chim Acta 2011; 716:133-7. [PMID: 22284888 DOI: 10.1016/j.aca.2011.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/25/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
The need of quick diagnostics and increasing number of bacterial species isolated necessitate development of a rapid and effective phenotypic identification method. Mass spectrometry (MS) profiling of whole cell proteins has potential to satisfy the requirements. The genus Mycobacterium contains more than 154 species that are taxonomically very close and require use of multiple genes including 16S rDNA for phylogenetic identification and classification. Six strains of five Mycobacterium species were selected as model bacteria in the present study because of their 16S rDNA similarity (98.4-99.8%) and the high similarity of the concatenated 16S rDNA, rpoB and hsp65 gene sequences (95.9-99.9%), requiring high identification resolution. The classification of the six strains by MALDI TOF MS protein barcodes was consistent with, but at much higher resolution than, that of the multi-locus sequence analysis of using 16S rDNA, rpoB and hsp65. The species were well differentiated using MALDI TOF MS and MALDI BioTyper™ software after quick preparation of whole-cell proteins. Several proteins were selected as diagnostic markers for species confirmation. An integration of MALDI TOF MS, MALDI BioTyper™ software and diagnostic protein fragments provides a robust phenotypic approach for bacterial identification and classification.
Collapse
Affiliation(s)
- Jun Wang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
27
|
Seyfarth F, Wiegand C, Erhard M, Gräser Y, Elsner P, Hipler UC. Identification of yeast isolated from dermatological patients by MALDI-TOF mass spectrometry. Mycoses 2011; 55:276-80. [PMID: 21848605 DOI: 10.1111/j.1439-0507.2011.02086.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Species identification of yeasts is based on biochemical (e.g. API ID 32 C®, bioMérieux) and molecular biological approaches. As an alternative to DNA-dependent methods, mass spectral analysis based identification of micro-organisms has become increasingly recognized. In a number of studies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been applied for the rapid classification and identification of micro-organisms. In this study, the applicability of MALDI-TOF MS for identifying yeasts isolated from dermatological patients was analysed and compared with the results from the API ID 32 C® system. Furthermore, sequencing the internal transcribed spacer (ITS) regions of the ribosomal DNA was employed as reference method. Candida (C.) albicans was isolated in 41.9% of all cases, C. parapsilosis in 20.3%, C. glabrata in 10.8%, and C. krusei in 6, 8.1%. Rarely isolated yeasts were Candida colliculosa, famata, guilliermondii, lusitaniae, and tropicalis as well as Geotrichum candidum, Rhodotorula mucilaginosa and Trichosporon mucoides. The MALDI TOF results were equal to the results gained by ITS sequence analysis in 94%, whereas API ID 32 C® provided the correct diagnosis in 84.3% (of all cases). This lower identification rate is mostly referable to frequent misidentifications of C. krusei as C. inconspicua/norvegensis,Candida tropicalis, or Geotrichum capitatum. In contrast, all C. krusei strains were correctly identified by MALDI TOF MS. In conclusion, species identification by MALDI-TOF MS was proven to be consistent with ITS sequence analysis; the technique has a resolving power comparatively as high as ITS sequence analysis.
Collapse
Affiliation(s)
- Florian Seyfarth
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Hotta Y, Sato J, Sato H, Hosoda A, Tamura H. Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5222-5230. [PMID: 21469741 DOI: 10.1021/jf2004095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A rapid bacterial identification method by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) using ribosomal proteins coded in S10 and spc operons as biomarkers, named the S10-GERMS (the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum) method, was applied for the genus Bacillus a Gram-positive bacterium. The S10-GERMS method could successfully distinguish the difference between B. subtilis subsp. subtilis NBRC 13719(T) and B. subtilis subsp. spizizenii NBRC 101239(T) because of the mass difference of 2 ribosomal subunit proteins, despite the difference of only 2 bases in the 16S rRNA gene between them. The 8 selected reliable and reproducible ribosomal subunit proteins without disturbance of S/N level on MALDI-TOF MS analysis, S10, S14, S19, L18, L22, L24, L29, and L30, coded in S10 and spc operons were significantly useful biomarkers for rapid bacterial classification at species and strain levels by the S10-GERMS method of genus Bacillus strains without purification of ribosomal proteins.
Collapse
Affiliation(s)
- Yudai Hotta
- School of Agriculture, Meijo University, Tenpaku-ku, Nagoya, Aichi, Japan.
| | | | | | | | | |
Collapse
|
29
|
Šedo O, Sedláček I, Zdráhal Z. Sample preparation methods for MALDI-MS profiling of bacteria. MASS SPECTROMETRY REVIEWS 2011; 30:417-434. [PMID: 21500244 DOI: 10.1002/mas.20287] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/15/2009] [Accepted: 11/15/2009] [Indexed: 05/30/2023]
Abstract
Direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) bacterial cell or lysate analysis appears to meet all the criteria required for a rapid and reliable analytical microorganism identification and taxonomical classification tool. Few-minute analytical procedure providing information extending up to sub-species level underlines the potential of the MALDI-MS profiling in comparison with other methods employed in the field. However, the quality of MALDI-MS profiles and consequently the performance of the method are influenced by numerous factors, which involve particular steps of the sample preparation procedure. This review is aimed at advances in development and optimization of the MALDI-MS profiling methodology. Approaches improving the quality of the MALDI-MS profiles and universal feasibility of the method are discussed.
Collapse
Affiliation(s)
- Ondrej Šedo
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
30
|
Sato H, Teramoto K, Ishii Y, Watanabe K, Benno Y. Ribosomal protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for phylogenety-based subspecies resolution of Bifidobacterium longum. Syst Appl Microbiol 2011; 34:76-80. [DOI: 10.1016/j.syapm.2010.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
|
31
|
Hotta Y, Teramoto K, Sato H, Yoshikawa H, Hosoda A, Tamura H. Classification of Genus Pseudomonas by MALDI-TOF MS Based on Ribosomal Protein Coding in S10−spc−alpha Operon at Strain Level. J Proteome Res 2010; 9:6722-8. [DOI: 10.1021/pr100868d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yudai Hotta
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kanae Teramoto
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroaki Sato
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiromichi Yoshikawa
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Akifumi Hosoda
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroto Tamura
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| |
Collapse
|
32
|
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010; 5:1733-54. [DOI: 10.2217/fmb.10.127] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost–effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
Collapse
Affiliation(s)
- Piseth Seng
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Marc Rolain
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Edouard Fournier
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Bernard La Scola
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Michel Drancourt
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | |
Collapse
|
33
|
Fernández-No IC, Böhme K, Gallardo JM, Barros-Velázquez J, Cañas B, Calo-Mata P. Differential characterization of biogenic amine-producing bacteria involved in food poisoning using MALDI-TOF mass fingerprinting. Electrophoresis 2010; 31:1116-27. [DOI: 10.1002/elps.200900591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Dieckmann R, Strauch E, Alter T. Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry. J Appl Microbiol 2009; 109:199-211. [PMID: 20059616 DOI: 10.1111/j.1365-2672.2009.04647.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Vibrio identification by means of traditional microbiological methods is time consuming because of the many biochemical tests that have to be performed to distinguish closely related species. This work aimed at evaluating the use of MALDI-TOF mass spectrometry for the rapid identification of Vibrio (V.) spp. as an advantageous application to rapidly discriminate the most important Vibrio spp. and distinguish Vibrio spp. from closely related bacterial species like Photobacterium damselae and Grimontia hollisae and other aquatic bacteria like Aeromonas spp. METHODS AND RESULTS Starting from sub-colony amounts of pure cultures grown on agar plates, a very simple sample preparation procedure was established and combined with a rapid and automated measurement protocol that allowed species identification within minutes. Closely related species like Vibrio alginolyticus and Vibrio parahaemolyticus or Vibrio cholerae and Vibrio mimicus could thus be differentiated by defining signatures of species-identifying biomarker ions (SIBIs). As a reference method for species designation and for determination of relationships between strains with molecular markers, partial rpoB gene sequencing was applied. CONCLUSIONS The MALDI-TOF MS-based method as well as the rpoB sequence-based approach for Vibrio identification described in this study produced comparable classification results. The construction of phylogenetic trees from MALDI-TOF MS and rpoB sequences revealed a very good congruence of both methods. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that whole-cell MALDI-TOF MS-based proteometric characterization represents a powerful tool for rapid and accurate classification and identification of Vibrio spp. and related species.
Collapse
Affiliation(s)
- R Dieckmann
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany.
| | | | | |
Collapse
|
35
|
Phylogenetic analysis of Rhodococcus erythropolis based on the variation of ribosomal proteins as observed by matrix-assisted laser desorption ionization-mass spectrometry without using genome information. J Biosci Bioeng 2009; 108:348-53. [DOI: 10.1016/j.jbiosc.2009.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 11/24/2022]
|
36
|
Schmidt F, Fiege T, Hustoft HK, Kneist S, Thiede B. Shotgun mass mapping of Lactobacillus species and subspecies from caries related isolates by MALDI-MS. Proteomics 2009; 9:1994-2003. [DOI: 10.1002/pmic.200701028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Demirev PA, Fenselau C. Mass spectrometry in biodefense. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1441-57. [PMID: 18720458 DOI: 10.1002/jms.1474] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potential agents for biological attacks include both microorganisms and toxins. In mass spectrometry (MS), rapid identification of potential bioagents is achieved by detecting the masses of unique biomarkers, correlated to each agent. Currently, proteins are the most reliable biomarkers for detection and characterization of both microorganisms and toxins, and MS-based proteomics is particularly well suited for biodefense applications. Confident identification of an organism can be achieved by top-down proteomics following identification of individual protein biomarkers from their tandem mass spectra. In bottom-up proteomics, rapid digestion of intact protein biomarkers is again followed by MS/MS to provide unambiguous bioagent identification and characterization. Bioinformatics obviates the need for culturing and rigorous control of experimental variables to create and use MS fingerprint libraries for various classes of bioweapons. For specific applications, MS methods, instruments and algorithms have also been developed for identification based on biomarkers other than proteins and peptides.
Collapse
Affiliation(s)
- Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA.
| | | |
Collapse
|
38
|
Hernychova L, Toman R, Ciampor F, Hubalek M, Vackova J, Macela A, Skultety L. Detection and Identification of Coxiella burnetii Based on the Mass Spectrometric Analyses of the Extracted Proteins. Anal Chem 2008; 80:7097-104. [DOI: 10.1021/ac800788k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lenka Hernychova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Rudolf Toman
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Fedor Ciampor
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Martin Hubalek
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Jana Vackova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Ales Macela
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Ludovit Skultety
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| |
Collapse
|
39
|
Hsieh SY, Tseng CL, Lee YS, Kuo AJ, Sun CF, Lin YH, Chen JK. Highly Efficient Classification and Identification of Human Pathogenic Bacteria by MALDI-TOF MS. Mol Cell Proteomics 2008; 7:448-56. [DOI: 10.1074/mcp.m700339-mcp200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Demirev PA, Fenselau C. Mass spectrometry for rapid characterization of microorganisms. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:71-93. [PMID: 20636075 DOI: 10.1146/annurev.anchem.1.031207.112838] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advances in instrumentation, proteomics, and bioinformatics have contributed to the successful applications of mass spectrometry (MS) for detection, identification, and classification of microorganisms. These MS applications are based on the detection of organism-specific biomarker molecules, which allow differentiation between organisms to be made. Intact proteins, their proteolytic peptides, and nonribosomal peptides have been successfully utilized as biomarkers. Sequence-specific fragments for biomarkers are generated by tandem MS of intact proteins or proteolytic peptides, obtained after, for instance, microwave-assisted acid hydrolysis. In combination with proteome database searching, individual biomarker proteins are unambiguously identified from their tandem mass spectra, and from there the source microorganism is also identified. Such top-down or bottom-up proteomics approaches permit rapid, sensitive, and confident characterization of individual microorganisms in mixtures and are reviewed here. Examples of MS-based functional assays for detection of targeted microorganisms, e.g., Bacillus anthracis, in environmental or clinically relevant backgrounds are also reviewed.
Collapse
|
41
|
Erhard M, Hipler UC, Burmester A, Brakhage AA, Wöstemeyer J. Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp Dermatol 2007; 17:356-61. [PMID: 17979969 DOI: 10.1111/j.1600-0625.2007.00649.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identification of dermatophytes is currently performed based on morphological criteria and is increasingly supported by genomic sequence comparison. The present study evaluates an alternative based on the analysis of clinical fungal isolates by mass spectrometry. Samples originating from skin and nail were characterized morphologically and by sequencing the internal transcribed spacer 1 (ITS1), ITS2 and the 5.8S rDNA regions of the rDNA clusters. In a blind comparative study, samples were analyzed by matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF MS). The mass spectra were compared to a database comprising of the spectral data of reference strains by applying the saramis software package. All fungal isolates belonging to the taxa Trichophyton rubrum, T. interdigitale, T. tonsurans, Arthroderma benhamiae and Microsporum canis were correctly identified, irrespective of host origin and pathology. To test the robustness of the approach, four isolates were grown on five different media and analyzed. Although the resulting mass spectra varied in detail, a sufficient number of signals were conserved resulting in data sets exploitable for unequivocal species identification. Taken together, the usually widespread dermatophytes can be identified rapidly and reliably by mass spectrometry. Starting from pure cultures, MALDI-TOF MS analysis uses very simple sample preparation procedures, and a single analysis is performed within minutes. Costs for consumables as well as preparation time are considerably lower than for PCR analysis.
Collapse
Affiliation(s)
- Marcel Erhard
- AnagnosTec GmbH, Am Mühlenberg, Potsdam/Golm, Germany
| | | | | | | | | |
Collapse
|
42
|
John Wiley & Sons, Ltd.. Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:689-700. [PMID: 17474104 DOI: 10.1002/jms.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
43
|
Rapid Identification of Hiochi Bacteria by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. BUNSEKI KAGAKU 2007. [DOI: 10.2116/bunsekikagaku.56.1071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|