1
|
Cho HM, Boccia E, Rajwani R, O’Connor RD, Boshoff H, Barry C, Bifulco G, Bewley CA. A Systematic Approach to Discover New Natural Product Scaffolds Using Database-Derived Relative Mass Spectral Defects and Molecular Networking. JACS AU 2025; 5:653-665. [PMID: 40017746 PMCID: PMC11862952 DOI: 10.1021/jacsau.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 03/01/2025]
Abstract
Rapid advances in mass spectrometry (MS) data analysis have accelerated the identification of natural products from complex mixtures such as natural product extracts. However, limitations in MS data in metabolite libraries and dereplication strategies are still lacking for assigning structures to known compounds and searching for unidentified compounds. To overcome these limitations, we present an approach that combines molecular networking with MS database-derived mass defect analysis to preferentially discover new compounds with high structural novelty in the initial stage of a discovery workflow. Specifically, unknown metabolites or clusters generated from molecular networking are assigned to a compound class based on their relative mass defects (RMDs) calculated using open-source databases. If ancillary data such as ultraviolet and MS/MS spectra of the unknown clusters are incongruent with the RMD-assigned compound class, metabolites are considered to have a new skeleton that exhibits a large difference in RMD value due to structural changes. Here, we applied this RMD-assisted method to a desert-derived bacterial strain library and validated it through the discovery of brasiliencin A (1), a new 18-membered macrolide from Nocardia brasiliensis. A putative biosynthetic pathway of brasiliencin A was proposed through whole-genome sequence analysis, and an additional 29 analogs were detected using absolute mass defect filtering (AMDF) based on plausible biosynthetic products. This led to the isolation of three additional macrolides, brasiliencins B-D (2-4). The structures of the brasiliencins (1-4) were fully elucidated through spectroscopic data analysis and quantum chemical calculations including ROE distance and 13C NMR chemical shift calculations, and experimental and theoretical electronic circular dichroism (ECD). Brasiliencin A showed strong activity against Mycobacterium smegmatis and Streptococcus australis (MIC = 31.3 nM and 7.81 μM, respectively) compared to brasiliencin B (MIC = 1000 nM and 62.5 μM, respectively) that differs at a single stereocenter.
Collapse
Affiliation(s)
- Hyo Moon Cho
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Eleonora Boccia
- Dipartimento
di Farmacia, Università di Salerno, via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Rahim Rajwani
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Robert D. O’Connor
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Helena Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology,
National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clifton Barry
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology,
National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Giuseppe Bifulco
- Dipartimento
di Farmacia, Università di Salerno, via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Carole A. Bewley
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Alcázar Magaña A, Vaswani A, Brown KS, Jiang Y, Alam MN, Caruso M, Lak P, Cheong P, Gray NE, Quinn JF, Soumyanath A, Stevens JF, Maier CS. Integrating High-Resolution Mass Spectral Data, Bioassays and Computational Models to Annotate Bioactives in Botanical Extracts: Case Study Analysis of C. asiatica Extract Associates Dicaffeoylquinic Acids with Protection against Amyloid-β Toxicity. Molecules 2024; 29:838. [PMID: 38398590 PMCID: PMC10892090 DOI: 10.3390/molecules29040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aβ cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid β-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aβ-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.
Collapse
Affiliation(s)
- Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashish Vaswani
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Kevin S. Brown
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, 105 SW 26th Street, Corvallis, OR 97331, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA;
| | - Md Nure Alam
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Parnian Lak
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Paul Cheong
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Jan F. Stevens
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Kheirkhah Rahimabad P, Jones AD, Zhang H, Chen S, Jiang Y, Ewart S, Holloway JW, Arshad H, Eslamimehr S, Bruce R, Karmaus W. Polymorphisms in Glutathione S-Transferase ( GST) Genes Modify the Effect of Exposure to Maternal Smoking Metabolites in Pregnancy and Offspring DNA Methylation. Genes (Basel) 2023; 14:1644. [PMID: 37628696 PMCID: PMC10454475 DOI: 10.3390/genes14081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Maternal smoking in pregnancy (MSP) affects the offspring's DNA methylation (DNAm). There is a lack of knowledge regarding individual differences in susceptibility to exposure to MSP. Glutathione S-transferase (GST) genes are involved in protection against harmful oxidants such as those found in cigarette smoke. This study aimed to test whether polymorphisms in GST genes influence the effect of MSP on offspring DNAm. Using data from the Isle of Wight birth cohort, we assessed the association of MSP and offspring DNAm in 493 mother-child dyads (251 male, 242 female) with the effect-modifying role of GST gene polymorphism (at rs506008, rs574344, rs12736389, rs3768490, rs1537234, and rs1695). MSP was assessed by levels of nicotine and its downstream metabolites (cotinine, norcotinine, and hydroxycotinine) in maternal sera. In males, associations of hydroxycotinine with DNAm at cg18473733, cg25949550, cg11647108, and cg01952185 and norcotinine with DNAm at cg09935388 were modified by GST gene polymorphisms (p-values < 0.05). In females, associations of hydroxycotinine with DNAm at cg12160087 and norcotinine with DNAm at cg18473733 were modified by GST gene polymorphisms (p-values < 0.05). Our study emphasizes the role of genetic polymorphism in GST genes in DNAm's susceptibility to MSP.
Collapse
Affiliation(s)
- Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - A. Daniel Jones
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, Newport PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Hampshire, Southampton SO16 6YD, UK
| | - Shakiba Eslamimehr
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - Robert Bruce
- Department of Anesthesiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| |
Collapse
|
4
|
Water-soluble saponins accumulate in drought-stressed switchgrass and may inhibit yeast growth during bioethanol production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:116. [PMID: 36310161 PMCID: PMC9620613 DOI: 10.1186/s13068-022-02213-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Developing economically viable pathways to produce renewable energy has become an important research theme in recent years. Lignocellulosic biomass is a promising feedstock that can be converted into second-generation biofuels and bioproducts. Global warming has adversely affected climate change causing many environmental changes that have impacted earth surface temperature and rainfall patterns. Recent research has shown that environmental growth conditions altered the composition of drought-stressed switchgrass and directly influenced the extent of biomass conversion to fuels by completely inhibiting yeast growth during fermentation. Our goal in this project was to find a way to overcome the microbial inhibition and characterize specific compounds that led to this inhibition. Additionally, we also determined if these microbial inhibitors were plant-generated compounds, by-products of the pretreatment process, or a combination of both. RESULTS Switchgrass harvested in drought (2012) and non-drought (2010) years were pretreated using Ammonia Fiber Expansion (AFEX). Untreated and AFEX processed samples were then extracted using solvents (i.e., water, ethanol, and ethyl acetate) to selectively remove potential inhibitory compounds and determine whether pretreatment affects the inhibition. High solids loading enzymatic hydrolysis was performed on all samples, followed by fermentation using engineered Saccharomyces cerevisiae. Fermentation rate, cell growth, sugar consumption, and ethanol production were used to evaluate fermentation performance. We found that water extraction of drought-year switchgrass before AFEX pretreatment reduced the inhibition of yeast fermentation. The extracts were analyzed using liquid chromatography-mass spectrometry (LC-MS) to detect compounds enriched in the extracted fractions. Saponins, a class of plant-generated triterpene or steroidal glycosides, were found to be significantly more abundant in the water extracts from drought-year (inhibitory) switchgrass. The inhibitory nature of the saponins in switchgrass hydrolysate was validated by spiking commercially available saponin standard (protodioscin) in non-inhibitory switchgrass hydrolysate harvested in normal year. CONCLUSIONS Adding a water extraction step prior to AFEX-pretreatment of drought-stressed switchgrass effectively overcame inhibition of yeast growth during bioethanol production. Saponins appear to be generated by the plant as a response to drought as they were significantly more abundant in the drought-stressed switchgrass water extracts and may contribute toward yeast inhibition in drought-stressed switchgrass hydrolysates.
Collapse
|
5
|
Eslamimehr S, Jones AD, Anthony TM, Arshad SH, Holloway JW, Ewart S, Luo R, Mukherjee N, Kheirkhah Rahimabad P, Chen S, Karmaus W. Association of prenatal acetaminophen use and acetaminophen metabolites with DNA methylation of newborns: analysis of two consecutive generations of the Isle of Wight birth cohort. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac002. [PMID: 35317219 PMCID: PMC8933617 DOI: 10.1093/eep/dvac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Acetaminophen is used by nearly two-thirds of pregnant women. Although considered safe, studies have demonstrated associations between prenatal acetaminophen use and adverse health outcomes in offspring. Since DNA methylation (DNAm) at birth may act as an early indicator of later health, assessments on whether DNAm of newborns is associated with gestational acetaminophen use or its metabolites are needed. Using data from three consecutive generations of the Isle of Wight cohort (F0-grandmothers, F1-mothers, and F2-offspring) we investigated associations between acetaminophen metabolites in F0 serum at delivery with epigenome-wide DNAm in F1 (Guthrie cards) and between acetaminophen use of F1 and F2-cord-serum levels with F2 cord blood DNAm. In epigenome-wide screening, we eliminated non-informative DNAm sites followed by linear regression of informative sites. Based on repeated pregnancies, indication bias analyses tested whether acetaminophen indicated maternal diseases or has a risk in its own right. Considering that individuals with similar intake process acetaminophen differently, metabolites were clustered to distinguish metabolic exposures. Finally, metabolite clusters from F1-maternal and F2-cord sera were tested for their associations with newborn DNAm (F1 and F2). Twenty-one differential DNAm sites in cord blood were associated with reported maternal acetaminophen intake in the F2 generation. For 11 of these cytosine-phosphate-guanine (CpG) sites, an indication bias was excluded and five were replicated in F2 with metabolite clusters. In addition, metabolite clusters showed associations with 25 CpGs in the F0-F1 discovery analysis, of which five CpGs were replicated in the F2-generation. Our results suggest that prenatal acetaminophen use, measured as metabolites, may influence DNAm in newborns.
Collapse
Affiliation(s)
- Shakiba Eslamimehr
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Robison Hall 3825 DeSoto Avenue Memphis, TN 38152, USA
| | - A Daniel Jones
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Rd Rm 212, East Lansing, MI 48823, USA
| | - Thilani M Anthony
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Rd Rm 212, East Lansing, MI 48823, USA
| | - S Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Hartley Library B12, University Rd, Highfield, Southampton SO17 1BJ, UK
- The David Hide Asthma and Allergy Research Centre, Hartley Library B12, University Rd, Highfield, Southampton, Isle of Wight SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Hartley Library B12, University Rd, Highfield, Southampton SO17 1BJ, UK
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Hartley Library B12, University Rd, Highfield, Southampton SO17 1BJ, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Hartley Library B12, University Rd, Highfield, Southampton SO17 1BJ, UK
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, 736 Wilson Road, D202 East Lansing, MI 48824, USA
| | - Rui Luo
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Robison Hall 3825 DeSoto Avenue Memphis, TN 38152, USA
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Robison Hall 3825 DeSoto Avenue Memphis, TN 38152, USA
| | - Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Robison Hall 3825 DeSoto Avenue Memphis, TN 38152, USA
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wilfried Karmaus
- **Correspondence address. School of Public Health, University of Memphis, Robison Hall, Memphis, TN 38152, USA. Tel: 803-767-8425; Fax: 9010678-1715; E-mail:
| |
Collapse
|
6
|
Data processing strategies for non-targeted analysis of foods using liquid chromatography/high-resolution mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Waldner BJ, Machalett R, Schönbichler S, Dittmer M, Rubner MM, Intelmann D. Fast Evaluation of Herbal Substance Class Composition by Relative Mass Defect Plots. Anal Chem 2020; 92:12909-12916. [PMID: 32902254 DOI: 10.1021/acs.analchem.0c01447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A holistic, nontargeted mass spectrometric analysis of any herbal material and preparation is intimately connected to fast chemical profiling and visualization of secondary plant metabolite classes or single compounds. High-resolution mass spectral data enable a broad variety of analytical possibilities. Often a fast and comprehensive overview on compound classes (phytochemical profiling) is needed before single-substance considerations. We present a fast approach for the initial characterization and substance class profiling using relative mass defect plots for the visualization of herbal compositions. From a dataset of 1160 common plant metabolites that represent a varied mixture of molecular classes in polarity, glycosylation, and alkylation, manually annotated for substance classes, the relative mass defects were calculated using theoretical molecular masses. For the calculation of the relative mass defect, a new approach incorporating two correction functions to obtain correct relative mass defect results also for large hydrocarbons, and a multitude of polyhalogenated molecules was developed. Using the Khachyan algorithm, elliptical areas clustering substance classes within the relative mass defect plots were calculated. The resulting novel relative mass defect plots provide a quick way of two-dimensional substance class mapping directly from high-resolution mass spectral data and may be considered as a unique fingerprint for herbals, part of them or herbal preparations. We show that adding the retention time as a third dimension improves the resolution power of the two-dimensional relative mass defect plot and offers the possibility for a more detailed substance class mapping.
Collapse
Affiliation(s)
- Birgit J Waldner
- Bionorica research GmbH (subsidiary of Bionorica SE), Mitterweg 24, 6020 Innsbruck, Austria.,Department of Neuroradiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Ramona Machalett
- Bionorica research GmbH (subsidiary of Bionorica SE), Mitterweg 24, 6020 Innsbruck, Austria.,Bionorica SE, Kerschensteinerstraße 11-15, 92318 Neumarkt, Germany
| | - Stefan Schönbichler
- Bionorica research GmbH (subsidiary of Bionorica SE), Mitterweg 24, 6020 Innsbruck, Austria
| | - Martin Dittmer
- Bionorica research GmbH (subsidiary of Bionorica SE), Mitterweg 24, 6020 Innsbruck, Austria.,Bionorica SE, Kerschensteinerstraße 11-15, 92318 Neumarkt, Germany
| | - Moritz M Rubner
- Bionorica SE, Kerschensteinerstraße 11-15, 92318 Neumarkt, Germany
| | - Daniel Intelmann
- Bionorica research GmbH (subsidiary of Bionorica SE), Mitterweg 24, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Cho HM, Doan TP, Ha TKQ, Kim HW, Lee BW, Pham HTT, Cho TO, Oh WK. Dereplication by High-Performance Liquid Chromatography (HPLC) with Quadrupole-Time-of-Flight Mass Spectroscopy (qTOF-MS) and Antiviral Activities of Phlorotannins from Ecklonia cava. Mar Drugs 2019; 17:E149. [PMID: 30836593 PMCID: PMC6471242 DOI: 10.3390/md17030149] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/13/2023] Open
Abstract
Ecklonia cava is edible seaweed that is found in Asian countries, such as Japan and Korea; and, its major components include fucoidan and phlorotannins. Phlorotannins that are isolated from E. cava are well-known to have an antioxidant effect and strong antiviral activity against porcine epidemic diarrhea virus (PEDV), which has a high mortality rate in piglets. In this study, the bioactive components were determined based on two different approaches: (i) bio-guided isolation using the antiviral activity against the H1N1 viral strain, which is a representative influenza virus that originates from swine and (ii) high-resolution mass spectrometry-based dereplication, including relative mass defects (RMDs) and HPLC-qTOFMS fragmentation analysis. The EC70 fraction showed the strongest antiviral activity and contained thirteen phlorotannins, which were predicted by dereplication. Ten compounds were directly isolated from E. cava extract and then identified. Moreover, the dereplication method allowed for the discovery of two new phlorotannins. The structures of these two isolated compounds were elucidated using NMR techniques and HPLC-qTOFMS fragmentation analysis. In addition, molecular modelling was applied to determine the absolute configurations of the two new compounds. The antiviral activities of seven major phlorotannins in active fraction were evaluated against two influenza A viral strains (H1N1 and H9N2). Six of the compounds showed moderate to strong effects on both of the viruses and phlorofucofuroeckol A (12), which showed an EC50 value of 13.48 ± 1.93 μM, is a potential active antiviral component of E. cava.
Collapse
Affiliation(s)
- Hyo Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Thi Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Thi Kim Quy Ha
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Hyun Woo Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ba Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ha Thanh Tung Pham
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Tae Oh Cho
- Marine Bio Research Center, Department of Life Science, Chosun University, Gwangju 501-759, Korea.
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
9
|
Narduzzi L, Stanstrup J, Mattivi F, Franceschi P. The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2145-2157. [DOI: 10.1080/19440049.2018.1523572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Luca Narduzzi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Jan Stanstrup
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Fulvio Mattivi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
- Centre for Agriculture, Food and the Environment, University of Trento, San Michele all’Adige, Italy
| | - Pietro Franceschi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| |
Collapse
|
10
|
Reese KL, Jones AD, Smith RW. Characterization of smokeless powders using multiplexed collision-induced dissociation mass spectrometry and chemometric procedures. Forensic Sci Int 2017; 272:16-27. [DOI: 10.1016/j.forsciint.2016.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/22/2016] [Accepted: 12/13/2016] [Indexed: 12/01/2022]
|
11
|
Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. ENVIRONMENT INTERNATIONAL 2017; 100:32-61. [PMID: 28062070 PMCID: PMC5322482 DOI: 10.1016/j.envint.2016.11.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/05/2023]
Abstract
Global profiling of xenobiotics in human matrices in an untargeted mode is gaining attention for studying the environmental chemical space of the human exposome. Defined as the study of a comprehensive inclusion of environmental influences and associated biological responses, human exposome science is currently evolving out of the metabolomics science. In analogy to the latter, the development and applications of high resolution mass spectrometry (HRMS) has shown potential and promise to greatly expand our ability to capture the broad spectrum of environmental chemicals in exposome studies. HRMS can perform both untargeted and targeted analysis because of its capability of full- and/or tandem-mass spectrum acquisition at high mass accuracy with good sensitivity. The collected data from target, suspect and non-target screening can be used not only for the identification of environmental chemical contaminants in human matrices prospectively but also retrospectively. This review covers recent trends and advances in this field. We focus on advances and applications of HRMS in human biomonitoring studies, and data acquisition and mining. The acquired insights provide stepping stones to improve understanding of the human exposome by applying HRMS, and the challenges and prospects for future research.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christine Austin
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dhavalkumar Patel
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgia Dolios
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahmoud Awawda
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manish Arora
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Ekanayaka EAP, Celiz MD, Jones AD. Relative mass defect filtering of mass spectra: a path to discovery of plant specialized metabolites. PLANT PHYSIOLOGY 2015; 167:1221-32. [PMID: 25659383 PMCID: PMC4378145 DOI: 10.1104/pp.114.251165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/05/2015] [Indexed: 05/20/2023]
Abstract
The rapid identification of novel plant metabolites and assignments of newly discovered substances to natural product classes present the main bottlenecks to defining plant specialized phenotypes. Although mass spectrometry provides powerful support for metabolite discovery by measuring molecular masses, ambiguities in elemental formulas often fail to reveal the biosynthetic origins of specialized metabolites detected using liquid chromatography-mass spectrometry. A promising approach for mining liquid chromatography-mass spectrometry metabolite profiling data for specific metabolite classes is achieved by calculating relative mass defects (RMDs) from molecular and fragment ions. This strategy enabled the rapid recognition of an extensive range of terpenoid metabolites in complex plant tissue extracts and is independent of retention time, abundance, and elemental formula. Using RMD filtering and tandem mass spectrometry data analysis, 24 novel elemental formulas corresponding to glycosylated sesquiterpenoid metabolites were identified in extracts of the wild tomato Solanum habrochaites LA1777 trichomes. Extensive isomerism was revealed by ultra-high-performance liquid chromatography, leading to evidence of more than 200 distinct sesquiterpenoid metabolites. RMD filtering led to the recognition of the presence of glycosides of two unusual sesquiterpenoid cores that bear limited similarity to known sesquiterpenes in the genus Solanum. In addition, RMD filtering is readily applied to existing metabolomics databases and correctly classified the annotated terpenoid metabolites in the public metabolome database for Catharanthus roseus.
Collapse
Affiliation(s)
- E A Prabodha Ekanayaka
- Department of Chemistry (E.A.P.E., A.D.J.) and Department of Biochemistry and Molecular Biology (M.D.C., A.D.J.), Michigan State University, East Lansing, Michigan 48824
| | - Mary Dawn Celiz
- Department of Chemistry (E.A.P.E., A.D.J.) and Department of Biochemistry and Molecular Biology (M.D.C., A.D.J.), Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Chemistry (E.A.P.E., A.D.J.) and Department of Biochemistry and Molecular Biology (M.D.C., A.D.J.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
13
|
Ekanayaka EAP, Li C, Jones AD. Sesquiterpenoid glycosides from glandular trichomes of the wild tomato relative Solanum habrochaites. PHYTOCHEMISTRY 2014; 98:223-31. [PMID: 24333030 DOI: 10.1016/j.phytochem.2013.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 05/26/2023]
Abstract
Profiles of terpenoid glycoside metabolites in glandular trichomes of Solanum habrochaites LA1777 leaves were generated using ultrahigh performance liquid chromatography/time-of-flight mass spectrometry with multiplexing of non-selective collision-induced dissociation (CID). Profiling data suggested a diverse group of 52 sesquiterpenoid glycosides, and fragment ions observed in both non-selective CID mass spectra and true tandem mass spectrometry (MS/MS) product ion spectra documented variation in extent of glycosylation and the presence of malonate or acetate esters. Up to 10 isomers were detected for some metabolites. Malonate and acetate esters of three sesquiterpene diol glucosides and one unmodified diglucoside were purified using reversed phase semipreparative HPLC and analyzed and identified using 1D and 2D NMR and mass spectrometry. All four of the isolated products were glucosides of campheranane-2,12-diol.
Collapse
Affiliation(s)
| | - Chao Li
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Pan R, Jones AD, Hu J. Cardiolipin-mediated mitochondrial dynamics and stress response in Arabidopsis. THE PLANT CELL 2014; 26:391-409. [PMID: 24443516 PMCID: PMC3963584 DOI: 10.1105/tpc.113.121095] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 05/19/2023]
Abstract
Mitochondria are essential and dynamic organelles in eukaryotes. Cardiolipin (CL) is a key phospholipid in mitochondrial membranes, playing important roles in maintaining the functional integrity and dynamics of mitochondria in animals and yeasts. However, CL's role in plants is just beginning to be elucidated. In this study, we used Arabidopsis thaliana to examine the subcellular distribution of CL and CARDIOLIPIN SYNTHASE (CLS) and analyzed loss-of-function cls mutants for defects in mitochondrial morphogenesis and stress response. We show that CL localizes to mitochondria and is enriched at specific domains, and CLS targets to the inner membrane of mitochondria with its C terminus in the intermembrane space. Furthermore, cls mutants exhibit significantly impaired growth as well as altered structural integrity and morphogenesis of mitochondria. In contrast to animals and yeasts, in which CL's effect on mitochondrial fusion is more profound, Arabidopsis CL plays a dominant role in mitochondrial fission and exerts this function, at least in part, through stabilizing the protein complex of the major mitochondrial fission factor, DYNAMIN-RELATED PROTEIN3. CL also plays a role in plant responses to heat and extended darkness, stresses that induce programmed cell death. Our study has uncovered conserved and plant-specific aspects of CL biology in mitochondrial dynamics and the organism response to environmental stresses.
Collapse
Affiliation(s)
- Ronghui Pan
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Jianping Hu
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
15
|
Humpula JF, Uppugundla N, Vismeh R, Sousa L, Chundawat SPS, Jones AD, Balan V, Dale BE, Cheh AM. Probing the nature of AFEX-pretreated corn stover derived decomposition products that inhibit cellulase activity. BIORESOURCE TECHNOLOGY 2014; 152:38-45. [PMID: 24275024 DOI: 10.1016/j.biortech.2013.10.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 05/18/2023]
Abstract
Sequential fractionation of AFEX-pretreated corn stover extracts was carried out using ultra-centrifugation, ultra-filtration, and solid phase extraction to isolate various classes of pretreatment products to evaluate their inhibitory effect on cellulases. Ultra-centrifugation removed dark brown precipitates that caused no appreciable enzyme inhibition. Ultra-filtration of ultra-centrifuged AFEX-pretreated corn stover extractives using a 10 kDa molecular weight cutoff (MWCO) membrane removed additional high molecular weight components that accounted for 24-28% of the total observed enzyme inhibition while a 3 kDa MWCO membrane removed 60-65%, suggesting significant inhibition is caused by oligomeric materials. Solid phase extraction (SPE) of AFEX-pretreated corn stover extractives after ultra-centrifugation removed 34-43% of the inhibition; ultra-filtration with a 5 kDa membrane removed 44-56% of the inhibition and when this ultra-filtrate was subjected to SPE a total of 69-70% of the inhibition were removed. Mass spectrometry found several phenolic compounds among the hydrophobic inhibition removed by SPE adsorption.
Collapse
Affiliation(s)
- James F Humpula
- Biomass Conversion Research Laboratory, Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48824, USA; DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA
| | - Nirmal Uppugundla
- Biomass Conversion Research Laboratory, Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48824, USA; DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA
| | - Ramin Vismeh
- DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Sousa
- Biomass Conversion Research Laboratory, Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48824, USA; DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA
| | - Shishir P S Chundawat
- Biomass Conversion Research Laboratory, Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48824, USA; DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - A Daniel Jones
- DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory, Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48824, USA; DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA
| | - Bruce E Dale
- Biomass Conversion Research Laboratory, Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48824, USA; DOE-Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA
| | - Albert M Cheh
- Department of Environmental Science, American University, Washington, DC 20016, USA.
| |
Collapse
|
16
|
Kim J, Kang K, Gonzales-Vigil E, Shi F, Jones AD, Barry CS, Last RL. Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the Acyltransferase2 locus in the wild tomato Solanum habrochaites. PLANT PHYSIOLOGY 2012; 160:1854-70. [PMID: 23054567 PMCID: PMC3510116 DOI: 10.1104/pp.112.204735] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/06/2012] [Indexed: 05/19/2023]
Abstract
Acylsugars are polyesters of short- to medium-length acyl chains on sucrose or glucose backbones that are produced in secretory glandular trichomes of many solanaceous plants, including cultivated tomato (Solanum lycopersicum). Despite their roles in biotic stress adaptation and their wide taxonomic distribution, there is relatively little information about the diversity of these compounds and the genes responsible for their biosynthesis. In this study, acylsugar diversity was assessed for 80 accessions of the wild tomato species Solanum habrochaites from throughout the Andes Mountains. Trichome metabolites were analyzed by liquid chromatography-time of flight-mass spectrometry, revealing the presence of at least 34 structurally diverse acylsucroses and two acylglucoses. Distinct phenotypic classes were discovered that varied based on the presence of glucose or sucrose, the numbers and lengths of acyl chains, and the relative total amounts of acylsugars. The presence or absence of an acetyl chain on the acylsucrose hexose ring caused clustering of the accessions into two main groups. Analysis of the Acyltransferase2 gene (the apparent ortholog of Solyc01g105580) revealed differences in enzyme activity and gene expression correlated with polymorphism in S. habrochaites accessions that varied in acylsucrose acetylation. These results are consistent with the hypothesis that glandular trichome acylsugar acetylation is under selective pressure in some populations of S. habrochaites and that the gene mutates to inactivity in the absence of selection.
Collapse
|
17
|
Hao JJ, Liu H, Donis-Gonzalez IR, Lu XH, Jones AD, Fulbright DW. Antimicrobial Activity of Chestnut Extracts for Potential Use in Managing Soilborne Plant Pathogens. PLANT DISEASE 2012; 96:354-360. [PMID: 30727136 DOI: 10.1094/pdis-03-11-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chestnut extracts were studied for antimicrobial activity against selected microorganisms, including plant pathogens. Chestnut extract on paper discs was applied to an agar medium to evaluate the inhibition to multiple microorganisms or the extract was added at various concentrations to a culture medium to evaluate the growth of target microorganisms. Chestnut type, tissue of plants (shell, pellicle, and leaf), extraction methods, and physical characteristics were studied to determine antimicrobial activity. Most test microorganisms were inhibited by the extracts at different effective concentrations for 50% growth inhibition (EC50). Pseudomonas fluorescens was the most sensitive (EC50 = 4.4 μg/μl), Phytophthora cambivora was one of the least inhibited (EC50 = 185 μg/μl), and Cryphonectria parasitica was not inhibited. Extracts of the Japanese × European chestnut (Castanea crenata × C. sativa) 'Colossal' showed a greater inhibition than those of wild trees of the Chinese species (C. mollissima). High temperature did not affect the inhibitory effect. Extracts from chestnut pellicle had the highest concentration of antimicrobial compound, compared with leaf and shell. The active fraction contained several substances with molecular masses consistent with one flavonol glycoside and several terpenoid substances. Pellicle and shell tissue reduced radish scab disease caused by Streptomyces scabies in the greenhouse.
Collapse
Affiliation(s)
| | | | | | | | - A Daniel Jones
- Department of Biochemistry & Molecular Biology and Department of Chemistry
| | - Dennis W Fulbright
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| |
Collapse
|
18
|
Sleno L. The use of mass defect in modern mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:226-236. [PMID: 22359333 DOI: 10.1002/jms.2953] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass defect is defined as the difference between a compound's exact mass and its nominal mass. This concept has been increasingly used in mass spectrometry over the years, mainly due to the growing use of high resolution mass spectrometers capable of exact mass measurements in many application areas in analytical and bioanalytical chemistry. This article is meant as an introduction to the different uses of mass defect in applications using modern MS instrumentation. Visualizing complex mass spectra may be simplified with the concept of Kendrick mass by plotting nominal mass as a function of Kendrick mass defect, based on hydrocarbons subunits, as well as slight variations on this theme. Mass defect filtering of complex MS data has been used for selectively detecting compounds of interest, including drugs and their metabolites or endogenous compounds such as peptides and small molecule metabolites. Several strategies have been applied for labeling analytes with reagents containing unique mass defect features, thus shifting molecules into a less noisy area in the mass spectrum, thus increasing their detectability, especially in the area of proteomics. All these concepts will be covered to introduce the interested reader to the plethora of possibilities of mass defect analysis of high resolution mass spectra.
Collapse
Affiliation(s)
- Lekha Sleno
- Chemistry Department, Pharmaqam, Université du Québec à Montréal, C.P. 8888 Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
19
|
Nagy K, Sandoz L, Craft B, Destaillats F. Mass-defect filtering of isotope signatures to reveal the source of chlorinated palm oil contaminants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1492-500. [DOI: 10.1080/19440049.2011.618467] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Zhu M, Zhang H, Humphreys WG. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 2011; 286:25419-25. [PMID: 21632546 DOI: 10.1074/jbc.r110.200055] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mass spectrometry plays a key role in drug metabolite identification, an integral part of drug discovery and development. The development of high-resolution (HR) MS instrumentation with improved accuracy and stability, along with new data processing techniques, has improved the quality and productivity of metabolite identification processes. In this minireview, HR-MS-based targeted and non-targeted acquisition methods and data mining techniques (e.g. mass defect, product ion, and isotope pattern filters and background subtraction) that facilitate metabolite identification are examined. Methods are presented that enable multiple metabolite identification tasks with a single LC/HR-MS platform and/or analysis. Also, application of HR-MS-based strategies to key metabolite identification activities and future developments in the field are discussed.
Collapse
Affiliation(s)
- Mingshe Zhu
- Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08543, USA
| | | | | |
Collapse
|