1
|
Basit A, Khan KUR, Rahman AU, Khan M, Ahmad T, Arafat M, Khan KU, Nalinbenjapun S, Sripetthong S, Ovatlarnporn C. UPLC-Q-TOF-MS profiling of Viola stocksii Boiss. and evaluation of aphrodisiac potential and risk factors associated with erectile dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117477. [PMID: 38007166 DOI: 10.1016/j.jep.2023.117477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viola stocksii Boiss. locally known as makhni or makhanr booti, is an important medicinal food plant with multiple therapeutic applications, including erectile dysfunction (ED). It is mixed with butter and used for boosting energy and sexual health in the subcontinent. AIMS OF THE STUDY This study was designed to evaluate the chemical composition, aphrodisiac potential and effect of V. stocksii on the risk factors associated with ED. METHODOLOGY The hydroethanolic extract of V. stocksii (HEEVS) was prepared through the microwave-assisted extraction (MAE) technique. The chemical composition was evaluated using preliminary phytochemical screening and UPLC-Q-TOF-MS analysis. Metals and minerals analysis was performed by an atomic absorption spectrophotometer. The aphrodisiac activity of HEEVS was evaluated using an in vivo aphrodisiac model established in male albino rats and the effect on various sexual parameters such as mount, intromission, ejaculation frequencies and mount, intromission, ejaculation latencies, postejaculatory interval, penile reflexes and serum hormone concentration were analyzed. The effect of HEEVS on various risk factors associated with ED, including prostate cancer (PC), bacterial infections, diabetes and obesity, was evaluated using various in vitro assays. Moreover, four compounds were selected from the UPLC-Q-TOF-MS profile and evaluated for in silico computational analysis against phosphodiesterase-5 (PDE-5) for possible interaction. FINDINGS The phytochemical screening revealed the presence of various secondary metabolites in HEEVS, while 58 compounds were tentatively identified in the UPLC-Q-TOF-MS analysis. Various important minerals and metals such as zinc, calcium, cadmium and magnesium were detected in the atomic absorption spectrometry analysis. The in vivo aphrodisiac evaluation showed a significant (p < 0.05) increase in the mount, intromission and ejaculation frequencies and a decrease in the mount, intromission latencies and post-ejaculatory intervals at a dose of 300 mg/kg. A marked (p < 0.05) increase was observed in the concentration of serum testosterone and luteinizing hormones in HEEVS treated animals with a significant increase in total penile reflexes. The extract displayed significant anti-prostate cancer activity and a potential antibacterial spectrum against E. coli and S. aureus, with MIC50 values of 215.72 μg/mL and 139.05 μg/mL, respectively. Similarly, HEEVS was found active towards pancreatic lipase (67.34 ± 1.03%), α-glucosidase (3.87 ± 0.54 mmol ACAE/g d.w.) and α-amylase (6.98 ± 1.63 mmol ACAE/g d.w.). The in silico docking study presented a potential interaction between the selected compounds and residues of the active site of PDE-5. CONCLUSION This report highlights the aphrodisiac potential of V. stocksii and provides experimental support for its traditional use in ED with an attenuative effect on the risk factors associated with ED. Moreover, the chemical composition displayed the presence of functional phytoconstituents and minerals in HEEVS and paves the way for the isolation of compounds with potent aphrodisiac activity.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Asad Ur Rahman
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Muhammad Khan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Tawseef Ahmad
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Kifayat Ullah Khan
- Quaid-e-Azam College of Pharmacy, Quaid-e-Azam Educational Complex, Sahiwal, Punjab, Pakistan
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| |
Collapse
|
2
|
Basit A, Ahmad S, Khan KUR, Aati HY, Sherif AE, Ovatlarnporn C, Khan S, Rao H, Arshad MA, Shahzad MN, Perveen S. Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front Chem 2023; 10:1077581. [PMID: 36688045 PMCID: PMC9853444 DOI: 10.3389/fchem.2022.1077581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Cardamine amara L. (Brassicaceae) is an important edible plant with ethnomedicinal significance. This study aimed at evaluating the phytochemical composition, anti-inflammatory, antioxidant and cytotoxicity aspects of the hydro-alcoholic extract of C. amara (HAECA). Methods: The phytochemical composition was evaluated through total phenolic contents (TPC), total flavonoid contents (TFC) determination and UPLC-QTOF-MS profiling. Anti-inflammatory evaluation of HAECA was carried out through the carrageenan induced paw edema model. Four in vitro methods were applied in the antioxidant evaluation of HAECA. MTT assay was used to investigate the toxicity profile of the species against human normal liver cells (HL7702), human liver cancer cell lines (HepG2) and human breast cancer cell lines (MCF-7). Three major compounds (Gentisic acid, skullcapflavone and conidendrine) identified in UPLC-Q-TOF-MS analysis were selected for in silico study against cyclooxygenase (COX-I and COX-II). Results and Discussion: The findings revealed that HAECA is rich in TPC (39.32 ± 2.3 mg GAE/g DE) and TFC (17.26 ± 0.8 mg RE/g DE). A total of 21 secondary metabolites were tentatively identified in UPLC-Q-TOF-MS analysis. In the MTT cytotoxicity assay, the extract showed low toxicity against normal cell lines, while significant anticancer activity was observed against human liver and breast cancer cells. The carrageenan induced inflammation was inhibited by HAECA in a dose dependent manner and showed a marked alleviation in the levels of oxidative stress (catalase, SOD, GSH) and inflammatory markers (TNF-α, IL-1β). Similarly, HAECA showed maximum antioxidant activity through the Cupric reducing power antioxidant capacity (CUPRAC) assay (31.21 ± 0.3 mg TE/g DE). The in silico study revealed a significant molecular docking score of the three studied compounds against COX-I and COX-I. Conclusively the current study encourages the use of C. amara as a novel polyphenolic rich source with anti-inflammatory and antioxidant potential and warrants further investigations on its toxicity profile.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Adeel Arshad
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| |
Collapse
|
3
|
Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Australian finger limes (Citrus australasica L.), an unusual citrus due to its unique pulp with a caviar-like appearance, has reached the global market as a promising source of bioactive compounds that promote health. This research was, therefore, performed to shed light on the bioactivity and composition of different parts of Citrus australasica L. (peel and pulp). Initial ultrasound-assisted extraction using MeOH:H2O (80:20, v/v) was carried out. After that, four fractions (hexane, ethyl acetate, butanol and water) were generated through liquid–liquid partitioning, and the total phenolic content (TPC) and antioxidant activity were evaluated using the Folin–Ciocalteu and the ferric reducing antioxidant power (FRAP) assays, respectively. The ethyl acetate fraction in the peel, which presented the highest values of TPC and antioxidant activity, was characterized using high-performance liquid chromatography coupled to quadrupole time-of-flight (HPLC-QTof) mass spectrometry. Fifteen compounds were identified, of which seven were characterized for the first time in this matrix. Moreover, ten phenolic compounds were quantified using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The major compounds in the sample were citric acid, pyrogallol, caffeic acid, coumarin, rutin, naringin, 2-coumaric acid, didymin, naringenin and isorhamnetin, which were found in a range from 2.7 to 8106.7 µg/g sample dry weight. Finally, the results presented in this novel work confirmed that the peel by-product of C. australasica L. is a potential source of bioactive compounds and could result in a positive outcome for the food, cosmetics and pharmaceutical industries.
Collapse
|
4
|
Dantas CAG, Abreu LS, da Cunha HN, Veloso CAG, Souto AL, de Fátima Agra M, de Oliveira Costa VC, da Silva MS, Tavares JF. Dereplication of phenolic derivatives of three Erythroxylum species using liquid chromatography coupled with ESI-MS n and HRESIMS. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:1011-1026. [PMID: 33738879 DOI: 10.1002/pca.3043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/21/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Given the diversity of secondary metabolites produced by species of the genus Erythroxylum, in addition to the many methods that have already been described in the literature, modern screening and identification methodologies, such as dereplication, represent an efficient and quick strategy compared to the classic techniques linked to natural product research. OBJECTIVE The objective of the present study was to determine the phenolic profiles obtained from three species of Erythroxylum (Erythroxylum pauferrense Plowman, Erythroxylum pulchrum A.St.-Hil. and Erythroxylum simonis Plowman) by dereplication using liquid chromatography coupled with ESI-MSn and HRESIMS. MATERIAL AND METHODS Ethyl acetate and n-butanolic fractions from crude ethanolic extract of Erythroxylum species were analyzed by HPLC-ESI-MSn and HPLC-HRESIMS, in order to identify its corresponding compounds. Experiments were performed in negative ionization mode, and the metabolites were provisionally identified based on deprotonated molecules, molecular formulas, fragmentation patterns and literature data. The corresponding isolated compounds were characterized by 1 H and 13 C NMR spectroscopy. RESULTS According to the dereplication method, it was possible to establish and compare the phenolic profile of the corresponding species by the assignment of 55 compounds, most of which were first described in these species and among which some were also new to the Erytroxylum genus. Additionally, nine compounds were isolated, including biphenyl-3,3',4,4'-tetraol, where the mass spectral data were not sufficient for their identification, and reported for the first time in the Erythroxylaceae family. CONCLUSION This research contributes to the phytochemical knowledge of the Erythroxylum genus and demonstrates the importance of the dereplication method regarding the investigation of natural products, enabling accurate identification of the metabolites while avoiding the efforts and material expenses involved in the isolation of known compounds.
Collapse
Affiliation(s)
- César Augusto Gonçalves Dantas
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Lucas Silva Abreu
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Hidna Nascimento da Cunha
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Carlos Arthur Gouveia Veloso
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Augusto Lopes Souto
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Maria de Fátima Agra
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Vicente Carlos de Oliveira Costa
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Josean Fechine Tavares
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| |
Collapse
|
5
|
Fatthalla M, Grimblat N, Brachet E, Alami M, Gandon V, Le Bideau F, Messaoudi S. Synthesis of axially chiral biaryl thioglycosides through thiosugar-directed Pd-catalyzed asymmetric C-H activation. Chem Commun (Camb) 2021; 57:10355-10358. [PMID: 34533145 DOI: 10.1039/d1cc03971g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report for the first time that the thiosugar moiety can be used both as a directing group enabling the regioselective activation of a C-H bond of biaryl scaffolds and as a chiral source inducing axial chirality. Our approach enables the easy generation of complex thioglycoside atropoisomers, thus paving the way to new products of potential biological interest.
Collapse
Affiliation(s)
- Maha Fatthalla
- Department of Chemistry, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo, Egypt.,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France.,Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 S2002LRK, Rosario, Republica Argentina
| | - Etienne Brachet
- Université de Paris, Faculté de Pharmacie de Paris, UMR CNRS 8038 (CiTCoM), 4 avenue de l'Observatoire, Paris FR-75006, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France.,Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay Cedex, France
| | - Franck Le Bideau
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
6
|
Huang Y, Huang X, Tian G, Zhang W, Su S, Xu X, Li J, Liu B. Two new amide glycosides with anti-inflammatory activity from the leaves of Streblus ilicifolius (Vidal) Corner. Nat Prod Res 2021; 36:1485-1493. [PMID: 33673782 DOI: 10.1080/14786419.2021.1893318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new amide glycosides, streblusoamides A (1) and B (2), along with 11 known compounds (3-13) were isolated from the leaves of Streblus ilicifolius. The structures of the isolates were elucidated by spectroscopic methods. All of the isolates were tested for inhibition of NO production in lipopolysaccharide (LPS)-induced RAW 264.7 cells to investigate their anti-inflammatory effects. The results revealed that compounds 1, 5 and 6 moderately inhibited the release of NO production with IC50 values ranging from 50.90 μM to 64.79 μM.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China.,Guangxi Key Laboratory of Tradtitional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China
| | - Xishan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Guobiao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Wenxiu Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Shanshan Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Xia Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Buming Liu
- Guangxi Key Laboratory of Tradtitional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China
| |
Collapse
|
7
|
Prasansuklab A, Brimson JM, Tencomnao T. Potential Thai medicinal plants for neurodegenerative diseases: A review focusing on the anti-glutamate toxicity effect. J Tradit Complement Med 2020; 10:301-308. [PMID: 32670825 PMCID: PMC7340876 DOI: 10.1016/j.jtcme.2020.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDD) are a range of debilitating conditions of the brain involving progressive loss of neurons, many of which are still currently incurable despite enormous efforts on drug discovery and development in the past decade. As NDD is closely linked to old age, the rapid worldwide growth in the aging population contributes to an increasing number of people with one of these incurable diseases and therefore it is considered a significant global health issue. There is an urgent need for novel effective treatments for NDD, and many new research strategies are centered on traditional medicine as an alternative or complementary solution. Several previous findings have suggested that glutamate toxicity drives neurodegeneration in many NDD, and the medicinal plants with anti-glutamate toxicity properties can be potentially used for their treatment. In order to obtain data relating to natural products against glutamate toxicity, six candidate plant species of Thailand were identified. Studies utilizing these herbs were searched for using the herb name (Latin and common names) along with the term "glutamate" in the following databases across all available years: PubMed, Scopus, and Google Scholar. This review emphasizes the importance of glutamate toxicity in NDD and summarizes individual plants and their active constituents with the mechanism of action against glutamate toxicity-mediated neuronal cell death that could be a promising resource for future NDD therapy. TAXONOMY CLASSIFICATION BY EVISE Alzheimer's disease, Neurodegenerative diseases, Cell culture, Molecular Biology, Traditional herbal medicine, Oxidative stress, Glutamate neurotransmitter.
Collapse
Affiliation(s)
- Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - James M. Brimson
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
8
|
Rapid characterization of compounds in fupo ganmao granules by high-performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2019; 176:112819. [DOI: 10.1016/j.jpba.2019.112819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
|
9
|
Gevrenova R, Bardarov K, Bouguet-Bonnet S, Voynikov Y, Balabanova V, Zheleva-Dimitrova D, Henry M. A new liquid chromatography-high resolution Orbitrap mass spectrometry-based strategy to characterize Glucuronide Oleanane-type Triterpenoid Carboxylic Acid 3, 28-O-Bidesmosides (GOTCAB) saponins.A case study of Gypsophila glomerata Pall ex M. B. (Caryophyllaceae). J Pharm Biomed Anal 2018; 159:567-581. [DOI: 10.1016/j.jpba.2018.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
|
10
|
Prasansuklab A, Meemon K, Sobhon P, Tencomnao T. Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. Altern Ther Health Med 2017; 17:551. [PMID: 29282044 PMCID: PMC5745612 DOI: 10.1186/s12906-017-2050-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
Background Although such local herb as Streblus asper (family Moraceae) has long been recognized for traditional folk medicines and important ingredient of traditional longevity formula, its anti-neurodegeneration or anti-aging activity is little known. This study aimed to investigate the neuroprotective effect of S. asper leaf extracts (SA-EE) against toxicity of glutamate-mediated oxidative stress, a crucial factor contributing to the neuronal loss in age-associated neurodegenerative diseases and the underlying mechanism as well as to evaluate its longevity effect. Methods Using mouse hippocampal HT22 as a model for glutamate oxidative toxicity, we carried out MTT and LDH assays including Annexin V-FITC/propidium iodide staining to determine the SA-EE effect against glutamate-induced cell death. Antioxidant activities of SA-EE were evaluated using the radical scavenging and DCFH-DA assays. To elucidate the underlying mechanisms, SA-EE treated cells were analyzed for the expressions of mRNA and proteins interested by immunofluorescent staining, western blot analysis and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) techniques. The longevity effect of SA-EE was examined on C. elegans by lifespan assay. Results We demonstrate that a concentration-dependent reduction of glutamate-induced cytotoxicity was significant after SA-EE treatment as measured by MTT and LDH assays. Annexin V-FITC/propidium iodide and immunofluorescent staining showed that co-treatment of glutamate with SA-EE significantly reduced apoptotic-inducing factor (AIF)-dependent apoptotic cell death. DCFH-DA assay revealed that this extract was capable of dose dependently attenuating the ROS caused by glutamate. Western blot analysis and qRT-PCR showed that nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels in the nucleus, as well as mRNA levels of antioxidant-related genes under Nrf2 regulation were significantly increased by SA-EE. Furthermore, this extract was capable of extending the lifespan of C. elegans. Conclusions SA-EE possesses both longevity effects and neuroprotective activity against glutamate-induced cell death, supporting its therapeutic potential for the treatment of age-associated neurodegenerative diseases.
Collapse
|
11
|
Zuo Z, Zheng Y, Liang Z, Liu Y, Tang Q, Liu X, Zhao Z, Zeng J. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:397-410. [PMID: 27943430 DOI: 10.1002/rcm.7804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Tissue-specific metabolite profiling helps to find trace alkaloids masked during organ analysis, which contributes to understanding the alkaloid biosynthetic pathways in vivo and evaluating the quality of medical plants by morphology. As Macleaya cordata contains diverse types of benzylisoquinoline alkaloids (BIAs), the alkaloid metabolite profiling was carried out on various tissues of the root. METHODS Laser microdissection with fluorescence detection was used to recognize and dissect different tissues from the root of M. cordata. Ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was applied to analyze the trace alkaloids in tissues. These detected alkaloids were elucidated using their accurate molecular weights, MS/MS data, MS fragmentation patterns and the known biosynthetic pathways of BIAs. Finally, the distribution of alkaloids in dissected tissues and whole sections was mapped. RESULTS Forty-nine alkaloids were identified from five microdissected tissues, and 24 of them were detected for the first time in M. cordata. Some types of alkaloids occurred specifically in dissected tissues. More alkaloids were detected in the cork and xylem vascular bundles which emit strong fluorescence under fluorescence microscopy. Some of the screened alkaloids were intermediates in sanguinarine and chelerythrine biosynthetic pathways, and others were speculated to be involved in the new branches of biosynthetic pathways. CONCLUSIONS The integrated method is sensitive, specific and reliable for determining trace alkaloids, which is also a powerful tool for metabolite profiling of tissue-specific BIAs in situ. The present findings should contribute to a better understanding of the biosynthesis of BIAs in M. cordata root and provide scientific evidence for its quality evaluation based on morphological characteristics. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zi Zuo
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410005, China
| | - Yajie Zheng
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhitao Liang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Yisong Liu
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qi Tang
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiubin Liu
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Jianguo Zeng
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
12
|
Verardo G, Gorassini A, Ricci D, Fraternale D. High Triterpenic Acids Production in Callus Cultures from Fruit Pulp of Two Apple Varieties. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:5-15. [PMID: 27688003 DOI: 10.1002/pca.2638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Very rarely fruit pulp has been used in in vitro culture to produce secondary metabolites useful in promoting health. OBJECTIVES The aims of this work were the study of the best conditions to obtain the callus cultures from the pulp of two varieties of apples, Golden Delicious (GD) and "Mela Rosa Marchigiana" (MRM), and the quali-quantitative analysis of secondary metabolites produced by the two in vitro callus cultures. METHODOLOGY Callus was induced on both Murashige and Skoog and Gamborg B5 media containing various combinations of supplements. To achieve the maximum recovery of secondary metabolites produced, preliminary extraction tests were carried out on GD apple culture using two different organic solvents (MeOH and EtOAc). The quali-quantitative analysis of the methanolic extract of both cultures was carried out by ESI-MSn and GC-MS techniques. RESULTS The GC-MS analysis revealed the presence of triterpenic acids, in particular, oleanolic, ursolic, maslinic, pomolic, tormentic, corosolic and annurcoic acid along with a phytosterol, β-sitosterol. In addition, GD callus culture produced phloridzin, absent in the MRM culture. In this last culture, however, the total amount of secondary metabolites was markedly higher. The in vivo production of these bioactive compounds were also quantified in the GD and MRM apple pulps. CONCLUSION Apple pulps produced higher amounts of triterpenic acids in vitro than in vivo. The present work can be considered a method to amplify the production of important secondary metabolites which exert beneficial effects on human health. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giancarlo Verardo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, Vicolo Florio 2/B, 33100, Udine, Italy
| | - Donata Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Bramante 28, 61029, Urbino, Italy
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Bramante 28, 61029, Urbino, Italy
| |
Collapse
|
13
|
Kosyakov DS, Ul'yanovskii NV, Anikeenko EA, Gorbova NS. Negative ion mode atmospheric pressure ionization methods in lignin mass spectrometry: A comparative study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2099-2108. [PMID: 27469607 DOI: 10.1002/rcm.7686] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Mass spectrometry with atmospheric pressure ionization is the most promising method for studying the structure of natural lignin, which is the second most abundant biopolymer in nature. The goal of this study is to compare the efficiency and characteristics of different types of ionization techniques (ESI, APCI, and APPI) in the negative ion mode by the example of softwood lignin. METHODS As the subjects of the study, we selected a preparation of spruce dioxane lignin and several phenols, simulating the basic structural fragments of the lignin macromolecule. High-resolution mass spectra were recorded using an Orbitrap mass spectrometer. Acetone was used as a solvent for samples and a dopant in photoionization mode. The ionization conditions were optimized to achieve the maximum intensity of the mass spectra. RESULTS The formation of deprotonated lignin molecules is characteristic of all the studied types of ionization; partial fragmentation of the biopolymer occurs in all ionization modes. ESI in the presence of ammonia yields low-intensity signals, leads to a significant decrease in ionization efficiency with increasing molecular weight of lignin oligomers, gives high-intensity impurity peaks in the mass spectra, and demonstrates selectivity for more polar structures. The ionization efficiency increases sharply in the order of ESI < APCI < APPI. The two latter methods are characterized by similar mechanisms of ionization; they ensure detection of approximately 1900 spruce lignin oligomers in the range of molecular weights up to 1.8 kDa. The determination of the elemental composition of oligolignols enabled the four main groups of compounds to be distinguished. CONCLUSIONS Photoionization using acetone as a dopant is distinguished by a significantly higher intensity of signals and the lowest sensitivity to contaminants present in the lignin preparation. This ionization method can be considered as preferred for studying the dioxane lignin preparations of woody plants. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dmitry S Kosyakov
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk, Russia
- Institute of Ecological Problems of the North, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russia
| | - Nikolay V Ul'yanovskii
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk, Russia
- Institute of Ecological Problems of the North, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russia
| | - Elena A Anikeenko
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Natalia S Gorbova
- Institute of Ecological Problems of the North, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russia
| |
Collapse
|
14
|
Mastering analytical challenges for the characterization of pentacyclic triterpene mono- and diesters of Calendula officinalis flowers by non-aqueous C30 HPLC and hyphenation with APCI-QTOF-MS. J Pharm Biomed Anal 2016; 118:195-205. [DOI: 10.1016/j.jpba.2015.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/18/2022]
|
15
|
Singsai K, Akaravichien T, Kukongviriyapan V, Sattayasai J. Protective Effects of Streblus asper Leaf Extract on H2O2-Induced ROS in SK-N-SH Cells and MPTP-Induced Parkinson's Disease-Like Symptoms in C57BL/6 Mouse. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:970354. [PMID: 26798403 PMCID: PMC4698882 DOI: 10.1155/2015/970354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
This study investigated the effects of Streblus asper leaf extract (SA) on reactive oxygen species (ROS) in SK-N-SH cell culture and on motor functions and behaviors in MPTP-treated C57BL/6 mice. SK-N-SH cell viability after incubation with SA for 24 h was measured by MTT assay. Intracellular ROS levels of SK-N-SH cells were quantified after pretreatment with SA (0, 200, 600, and 1000 µg/mL) in the presence of H2O2 (300 µM). Male C57BL/6 mice were force-fed with water or 200 mg/kg/day SA for 32 days. Intraperitoneal injection of MPTP was used to induce Parkinson's disease-like symptoms. Catalepsy, beam balance ability, olfactory discrimination, social recognition, and spontaneous locomotor activity were assessed on days 19, 21, 23, 26, and 32, respectively. In cell culture, SA at 200, 600, and 1000 µg/mL significantly decreased ROS levels in H2O2-treated SK-N-SH cells. MPTP-treated C57BL/6 mice showed a significant change in all parameters tested when compared to the control group. Pretreatment and concurrent treatment with 200 mg/kg/day SA could antagonize the motor and cognitive function deficits induced by MPTP. The results show that SA possesses anti-Parkinson effects in MPTP-treated C57BL/6 mice and that reduction in ROS levels might be one of the mechanisms.
Collapse
Affiliation(s)
- Kanathip Singsai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tarinee Akaravichien
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jintana Sattayasai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Kim E, Noh K, Lee SJ, Shin B, Hwang JT, Lee SW, Rho MC, Kang W. Simultaneous determination of 3-O-acetyloleanolic acid and oleanolic acid in rat plasma using liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal 2015; 118:96-100. [PMID: 26520257 DOI: 10.1016/j.jpba.2015.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
3-O-Acetyloleanolic acid (OAA) is a triterpenoid compound, and exerts an apoptosis in cancer cell lines, an inhibition of both atopic and allergic contact dermatitis in murine model, and a suppression of inflammatory bone loss in mice. OAA can be converted into oleanolic acid (OA) by hydrolysis in vivo, and OA exhibits several pharmacological effects as well. A liquid chromatographic method using tandem mass spectrometry (MS/MS) was developed for the simultaneous determination of OAA and OA in rat plasma. After liquid-liquid extraction with ethylacetate, both substances were chromatographed on a reversed phase column with a mobile phase of 0.1% formic acid aqueous solution and acetonitrile (1:9, v/v). The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This analytical method was successfully applied to monitor plasma concentrations of both substances over time following an intravenous administration of OAA in rats.
Collapse
Affiliation(s)
- Eunyoung Kim
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea
| | - Keumhan Noh
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea
| | - Sang Joon Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea
| | - Beomsoo Shin
- College of Pharmacy, Catholic University of Daegu, Kyoungbuk 712-702, South Korea
| | - Joo Tae Hwang
- Bio-Material Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, South Korea
| | - Seung Woong Lee
- Bio-Material Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, South Korea
| | - Mun-Chul Rho
- Bio-Material Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, South Korea.
| | - Wonku Kang
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea.
| |
Collapse
|