1
|
Bianco M, Ventura G, Coniglio D, Monopoli A, Losito I, Cataldi TRI, Calvano CD. Development of a New Binary Matrix for the Comprehensive Analysis of Lipids and Pigments in Micro- and Macroalgae Using MALDI-ToF/ToF Mass Spectrometry. Int J Mol Sci 2024; 25:5919. [PMID: 38892117 PMCID: PMC11172705 DOI: 10.3390/ijms25115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-Undaria pinnatifida, Dulse-Palmaria palmata, and Nori-Porphyra spp.) and microalgae (Spirulina-Arthrospira platensis, and Chlorella-Chlorella vulgaris) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Davide Coniglio
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
| | - Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Cosima D. Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| |
Collapse
|
2
|
Ti3C2(OH)x-assisted LDI-TOF-MS for the rapid analysis of natural small molecules. Anal Bioanal Chem 2022; 414:8447-8461. [DOI: 10.1007/s00216-022-04382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
3
|
Monopoli A, Ventura G, Aloia A, Ciriaco F, Nacci A, Cataldi TRI, Calvano CD. Synthesis and Investigation of Novel CHCA-Derived Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Lipids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082565. [PMID: 35458772 PMCID: PMC9028824 DOI: 10.3390/molecules27082565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
A significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances. We have taken this rational design one step further by developing and optimizing new MALDI matrices with a range of modifications on the CHCA core, involving different functionalities and substituents. Of particular interest was the understanding of the electron-withdrawing (e.g., nitro-) or donating (e.g., methoxy-) effects along with the extent of conjugation on the ionization efficiency. In the present work, ten matrices were designed on a reasonable basis, synthesized, and characterized by NMR and UV spectroscopies and laser desorption ionization. With the assistance of these putative MALDI matrices, samples containing phospholipids (PL), and neutral di-/tri-acylglycerols (DAG, TAG) were investigated using milk, fish, blood, and human plasma extracts. In comparison with CHCA and ClCCA, four of them, viz. [(2E,4E)-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienoic acid] (1), [(2E,4E)-2-cyano-5-(4-nitrophenyl)penta-2,4-dienoic acid] (2), [(E)-2-cyano-3-(6-methoxynaphthalen-2-yl)acrylic acid] (6) and [(E)-2-cyano-3-(naphthalen-2-yl)acrylic acid] (7) displayed good to even excellent performances as MALDI matrices in terms of ionization capability, interference-free spectra, S/N ratio, and reproducibility. Especially compound 7 (cyano naphthyl acrylic acid, CNAA) was the election matrix for PL analysis and matrix 2 (cyano nitrophenyl dienoic acid, CNDA) for neutral lipids such as DAG and TAG in positive ion mode.
Collapse
Affiliation(s)
- Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Andrea Aloia
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Angelo Nacci
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- CNR—Istituto di Chimica dei Composti Organometallici (ICCOM), Bari Section, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cosima D. Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| |
Collapse
|
4
|
Borisov RS, Matveeva MD, Zaikin VG. Reactive Matrices for Analytical Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Crit Rev Anal Chem 2021; 53:1027-1043. [PMID: 34969337 DOI: 10.1080/10408347.2021.2001309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In recent years, a special focus is placed on the usage of reactive matrices for analytical matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Since 2003, when the term "reactive matrices" was suggested and the dignity of compounds, possessing dualistic properties as matrices and derivatization agents was demonstrated, corresponding approach has found application in various fields and, in particular, in bioanalysis (metabolomics, lipidomics, etc.). The main advantage of this methodology is that it reduces sample treatment time, simplifies the procedure of sample handling, improves the sensitivity of analysis, enhances the molecular identification and profiling. Within the framework of this review, the main attention is paid to "true" reactive matrices that interact with analyte molecules through an exchange or addition reactions. A special section discusses practical application of reactive matrices in the determination of the distribution of targeted and non-targeted organic substances on the surface of biological tissue sections by MALDI-MS imaging. In this critical review, a controversial proposal is made to consider protonating and deprotonating matrices as reactive, because they can undergo a chemical reaction such as proton transfer that occurs in both target solution and MALDI plume. In this respect, special attention is paid to "proton sponge" matrices that have found a wide application in the analysis of various acidic compounds by MALDI-MS in the negative mode. Historical data on the formation of ions and the fate of matrices in MALDI are considered at the beginning of this article.
Collapse
Affiliation(s)
- Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mariya D Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Fullerenol as a water-soluble MALDI-MS matrix for rapid analysis of small molecules and efficient quantification of saccharin sodium in foods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122819. [PMID: 34130205 DOI: 10.1016/j.jchromb.2021.122819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
Due to the strong background interferences in the low-mass region and poor reproducibility of conventional organic matrices, it is of great importance to develop a novel matrix for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to qualitatively and quantitatively analyze small molecules. In this work, water-soluble fullerenol C60(OH)24-26 was selected as a MALDI matrix for the analysis of low-molecular-weight compounds in consideration of optical absorption property, water solubility and stability. Compared with the traditional matrices, fullerenol demonstrated lower background interference and stronger peak intensity. In addition, the hydrophilic fullerenol could avoid the heterogeneous crystallization in sample preparation, increase the reproducibility and sensitivity of MALDI-MS, and ameliorate quantitative analysis of small molecules. With saccharin as model analyte, quantitative analysis was carried out using fullerenol as matrix. The results demonstrated satisfying reproducibility and good tolerance to salt. The limit-of-detection of the quantitative analysis was as low as 4 pmol, and the linear range is 1-100 μg mL-1 with R2 greater than 0.99. The analytical results also showed excellent precision and accuracy, low matrix effect and good recovery rate. Fullerenol as a potential matrix was further validated in the quantification of saccharin sodium in different real food samples, such as nuts and drinks. This work not only confirms the potential of fullerenol for the quantitative analysis in food field, but also provides a new technique for rapid analysis of small molecules.
Collapse
|
6
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
7
|
Houdová D, Soto J, Castro R, Rodrigues J, Soledad Pino-González M, Petković M, Bandosz TJ, Algarra M. Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. J Colloid Interface Sci 2021; 591:373-383. [PMID: 33631525 DOI: 10.1016/j.jcis.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
A binary system composed of carbon dots (CDs) and N-doped CDs (N-CDs) embedded in an organic matrix was used for the analysis of cholesterol by MALDI (matrix-assisted laser desorption and ionization time-of-flight) mass spectrometry, as a model for detection of small, biologically relevant molecules. The results showed that both CDs are sensitive to the cholesterol and can be used either alone or in a binary system with 2,5-dihydroxybenzoic acid (DHB) to enhance the detection process. It was found that both COOH and NH2 groups on CDs surface contributed to the enhancement in the cholesterol detection by MALDI mass spectrometry in the presence of inorganic cations. Nevertheless, in the presence of NaCl, N-CDs led to a better reproducibility of results. It was due to the coexistence of positive and negative charge on N-CDs surface that led to a homogeneous analyte/substrate distribution, which is an important detection parameter. The enhancing effect of carbon dots was linked to a negative Gibbs energy of the complex formation between CDs, Na+, cholesterol and DHB, and it was supported by theoretical calculations. Moreover, upon the addition of CDs/N-CDs, such features as a low ionization potential, vertical excitation, dipole moment and oscillator strength positively affected the cholesterol detection by MALDI in the presence of Na+.
Collapse
Affiliation(s)
- Dominika Houdová
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Juan Soto
- Department of Physical Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Rita Castro
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mª Soledad Pino-González
- Department of Organic Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Marijana Petković
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| | - Manuel Algarra
- Department of Inorganic Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
8
|
Qiao Z, Lissel F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem Asian J 2021; 16:868-878. [PMID: 33657276 PMCID: PMC8251880 DOI: 10.1002/asia.202100044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 02/03/2023]
Abstract
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.
Collapse
Affiliation(s)
- Zhi Qiao
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
| |
Collapse
|
9
|
Tammekivi E, Ghiami-Shomami A, Tshepelevitsh S, Trummal A, Ilisson M, Selberg S, Vahur S, Teearu A, Lõkov M, Peets P, Pagano T, Leito I. Experimental and Computational Study of Aminoacridines as MALDI(-)-MS Matrix Materials for the Analysis of Complex Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1080-1095. [PMID: 33726494 DOI: 10.1021/jasms.1c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoaminoacridines (1-, 2-, 3-, 4-, and 9-aminoacridine) were studied for suitability as matrices in the negative ion mode matrix-assisted laser desorption/ionization mass spectrometry (MALDI(-)-MS) analysis of various samples. This is the first study to examine 1-, 2-, and 4-aminoacridine as potential matrix material candidates for MALDI(-)-MS. In addition, spectral (UV-Vis absorption and fluorescence), proton transfer-related (basicity and autoprotolysis), and crystallization properties of these compounds were characterized experimentally and/or computationally. For testing the capabilities of these aminoacridines as matrix materials, four samples related to cultural heritage materials-stearic acid, colophony resin, dyer's madder dye, and a resinous case-study sample from a shipwreck-were analyzed with MALDI(-)-MS. A novel algorithm (implemented as an executable Python script) for MS data analysis was developed to compare the five matrix materials and to help mass spectrometrists rapidly identify peaks originating from the sample and matrix material. It was determined that all five of the studied aminoacridines can successfully be used as matrix materials in MALDI(-)-MS analysis. As an interesting finding, in several cases, the best mass spectra were obtained by using a relatively small amount of matrix material mixed with an excess amount of sample. 3- and 4-aminoacridine outperformed the other aminoacridines in the ease of obtaining acceptable spectra, average number of ions identified in the mass spectra, and low dependence of the sample-to-matrix mass ratio on experimental results.
Collapse
Affiliation(s)
- Eliise Tammekivi
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Ali Ghiami-Shomami
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Sofja Tshepelevitsh
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Aleksander Trummal
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Mihkel Ilisson
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Sigrid Selberg
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Signe Vahur
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Anu Teearu
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Märt Lõkov
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Pilleriin Peets
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Todd Pagano
- Department of Science & Mathematics, Rochester Institute of Technology, 14623 Rochester, New York, United States
| | - Ivo Leito
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
10
|
Krivosheina MS, Borisov RS, Zhilyaev DI, Matveeva MD, Zaikin VG. New suitable deprotonating matrices for the analysis of carboxylic acids and some acidic compounds by matrix-assisted laser desorption/ionization mass spectrometry in negative ion mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8954. [PMID: 32979299 DOI: 10.1002/rcm.8954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Direct non-derivatization analysis of organic acids and acidic compounds by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) in positive ion mode is not always possible due to the low ionization efficiency of analytes. Some new efficient deprotonating matrices were suggested that allowed the production of negative ions from acidic compounds during MALDI-MS experiments. METHODS Various tested carboxyl-containing compounds as well as compounds with acidic properties were mixed with the suggested deprotonating matrices [4-dimethylaminobenzaldehyde (DMABA), N,N-dimethylamino-p-phenylenediamine or 3-aminoquinoline] and applied on a standard MALDI target followed by recording MALDI mass spectra in negative ion mode. RESULTS All the tested acidic compounds mixed with the suggested deprotonating matrices produced abundant [M - H]- ions under MALDI conditions. DMABA produced the strongest signals reflecting greater sensitivity of analysis. CONCLUSIONS The suggested deprotonating matrices are commercially available compounds and are good alternatives to well-known matrices of this kind and, in particular, the often used 9-aminoacridine. DMABA is the best of the tested potential matrices and is suitable for the detection of low molecular weight carboxyl-containing compounds, substituted phenols, and mixtures of naphthenic acids by (-)MALDI-MS.
Collapse
Affiliation(s)
- Mariya S Krivosheina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
- People's Friendship University of Russia, ul. Miklukho-Maklay 6, Moscow, 117198, Russian Federation
| | - Dmitry I Zhilyaev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
- People's Friendship University of Russia, ul. Miklukho-Maklay 6, Moscow, 117198, Russian Federation
| | - Mariya D Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
| | - Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
| |
Collapse
|
11
|
Calvano CD, Bianco M, Losito I, Cataldi TRI. Proteomic Analysisof Food Allergens by MALDI TOF/TOF Mass Spectrometry. Methods Mol Biol 2021; 2178:357-376. [PMID: 33128761 DOI: 10.1007/978-1-0716-0775-6_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is largely recognized as an important tool in the analysis of many biomolecules such as proteins and peptides. The MS analysis of digested peptides to identify a protein or some of its modifications is a key step in proteomics. MALDI-MS is well suited for the peptide mass fingerprinting (PMF) technique, as well as selected fragmentation of various precursors using collisional-induced dissociation (CID) or post-source decay (PSD).In the last few years, MALDI-MS has played a significant role in food chemistry, especially in the detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications induced by various industrial processes that could be an issue in terms of food quality and safety.Here, we present simple extraction protocols of allergenic proteins in food commodities such as milk, egg, hazelnut , and lupin seeds. Classic bottom-up approaches based on Sodium Dodecyl Sulphate (SDS) gel electrophoresis separation followed by in-gel digestion or direct in-solution digestion of whole samples are described. MALDI-MS and MS /MS analyses are discussed along with a comparison of data obtained by using the most widespread matrices for proteomic studies, namely, α-cyano-4-hydroxy-cinnamic acid (CHCA) and α-cyano-4-chloro-cinnamic acid (CClCA). The choice of the most suitable MALDI matrix is fundamental for high-throughput screening of putative food allergens.
Collapse
Affiliation(s)
- Cosima D Calvano
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy. .,Dipartimento di Farmacia- Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Ilario Losito
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Tommaso R I Cataldi
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
Monopoli A, Nacci A, Cataldi TRI, Calvano CD. Synthesis and Matrix Properties of α-Cyano-5-phenyl-2,4-pentadienic Acid (CPPA) for Intact Proteins Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Molecules 2020; 25:molecules25246054. [PMID: 33371472 PMCID: PMC7767571 DOI: 10.3390/molecules25246054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
The effectiveness of a synthesized matrix, α-cyano-5-phenyl-2,4-pentadienic acid (CPPA), for protein analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in complex samples such as foodstuff and bacterial extracts, is demonstrated. Ultraviolet (UV) absorption along with laser desorption/ionization mass spectrometry (LDI-MS) experiments were systematically conducted in positive ion mode under standard Nd:YLF laser excitation with the aim of characterizing the matrix in terms of wavelength absorption and proton affinity. Besides, the results for standard proteins revealed that CPPA significantly enhanced the protein signals, reduced the spot-to-spot variability and increased the spot homogeneity. The CPPA matrix was successful employed to investigate intact microorganisms, milk and seed extracts for protein profiling. Compared to conventional matrices such as sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA) and 4-chloro-α-cyanocinnamic acid (CClCA), CPPA exhibited better signal-to-noise (S/N) ratios and a uniform response for most examined proteins occurring in milk, hazelnut and in intact bacterial cells of E. coli. These findings not only provide a reactive proton transfer MALDI matrix with excellent reproducibility and sensitivity, but also contribute to extending the battery of useful matrices for intact protein analysis.
Collapse
Affiliation(s)
- Antonio Monopoli
- Agenzia delle Dogane e dei Monopoli, Ufficio delle Dogane di Bari, Corso De Tullio, 70122 Bari, Italy;
| | - Angelo Nacci
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy; (A.N.); (T.R.I.C.)
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy; (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., 70126 Bari, Italy
| | - Cosima D. Calvano
- Centro Interdipartimentale di Ricerca S.M.A.R.T., 70126 Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
13
|
Guest M, Le Sueur R, Pilkington M, Dudding T. Development of an Unsymmetrical Cyclopropenimine-Guanidine Platform for Accessing Strongly Basic Proton Sponges and Boron-Difluoride Diaminonaphthalene Fluorophores. Chemistry 2020; 26:8608-8620. [PMID: 32319110 DOI: 10.1002/chem.202001227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/18/2020] [Indexed: 01/06/2023]
Abstract
An unsymmetrical guanidine-cyclopropenimine proton sponge DAGUN and the related BF2 -chelate DAGBO are reported. Insight into the structural, electronic, bonding and photophysical properties of these two molecules are presented. Joint experimental and theoretical studies reveal the protonated form of DAGUN possesses an intramolecular N⋅⋅⋅H-N hydrogen bond which affords a high experimental pKBH+ of 26.6 (computed=26.3). Photophysical studies show that in solution DAGUN displays a green emission at 534 nm, with a large Stokes shift of 235 nm (14,718 cm-1 ). In contrast, the conjugate acid DAGUN-H+ is only weakly emissive due to attenuated intramolecular charge transfer. X-ray diffraction studies reveal that DAGBO contains a stable tetracoordinate boronium cation, reminiscent of the well-established BODIPY family of dyes. In solution, DAGBO exhibits a strong blue emission at 450 nm coupled with a large Stokes shift (Δλ=158 nm, Δν=11,957 cm-1 ) and quantum yield of 62 %, upon excitation at 293 nm. DAGBO sets the stage as the first entry into a new class of boron-difluoride diaminonaphthalenes (BOFDANs) that represent highly fluorescent and tunable next-generation dyes with future promise for biosensing and bioimaging applications.
Collapse
Affiliation(s)
- Matt Guest
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Richard Le Sueur
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
14
|
Ventura G, Calvano CD, Abbattista R, Bianco M, De Ceglie C, Losito I, Palmisano F, Cataldi TRI. Characterization of bioactive and nutraceutical compounds occurring in olive oil processing wastes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1670-1681. [PMID: 31268208 DOI: 10.1002/rcm.8514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Several bioactive compounds, including phenolic acids and secoiridoids, are transferred from olive drupes to olive oil during the first stage of production. Here, the characterization of these low molecular weight (LMW) compounds in olive oil and in closely related processing materials, like olive leaves (OL) and olive mill wastewaters (OMW), was faced up, for the first time, by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS). METHODS A novel binary matrix composed of 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and 9-aminoacridine (9AA) (1:1 molar ratio), displaying excellent ionization properties at low levels of laser energy, was employed in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm). MS/MS experiments were performed by using ambient air as the collision gas. RESULTS Four major secoiridoids typically present in olive oil, i.e., the aglycones of oleuropein and ligstroside, and oleacein and olecanthal at m/z 377.1, 361.1, 319.1 and 303.1, respectively, were detected in virgin olive oil (VOO) extracts, along with some of their chemical/enzymatic hydrolysis by-products, such as elenolic (m/z 241.1), decarboxymethyl-elenolic acids (m/z 183.1) and hydroxytyrosol (m/z 153.1). Besides oleuropein aglycone and oleacein, hydroxylated derivatives of decarboxymethyl-elenolic acid and hydroxytyrosol were evidenced in OMW. CONCLUSIONS While oleuropein was confirmed in OL extracts, several interesting phenolic compounds, including hydroxytyrosol, were recognized in OMW. The proposed approach based on the use of a novel binary matrix for MALDI MS/MS analyses of LMW bioactive compounds can be considered a promising analytical tool for a rapid screening of the phenolic fraction in olive oils and related processing wastes.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cosima D Calvano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ramona Abbattista
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cristina De Ceglie
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ilario Losito
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
15
|
Huang C, Yan J, Zhan L, Zhao M, Zhou J, Gao H, Xie W, Li Y, Chai W. Linkage and sequence analysis of neutral oligosaccharides by negative-ion MALDI tandem mass spectrometry with laser-induced dissociation. Anal Chim Acta 2019; 1071:25-35. [PMID: 31128752 DOI: 10.1016/j.aca.2019.04.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 11/25/2022]
Abstract
Mass spectrometry (MS) has become the primary method for high-sensitivity structural determination of oligosaccharides. Fragmentation in the negative-ion MS can provide a wealth of structural information and these can be used for sequence determination. However, although negative-ion MS of neutral oligosaccharide using the deprotonated molecule [M-H]- as the precursor has been very successful for electrospray ionization (ESI), it has only limited success for matrix-assisted laser desorption/ionization (MALDI). In the present study, the features of negative-ion MALDI primary spectra were investigated in detail and the product-ion spectra using [M-H]- and [M+Cl]- as the precursors were carefully compared. The formation of [M-H]- was the main difficulty for MALDI while [M+Cl]- was proved to be useful as alternative precursor anion for MALDI-MS/MS to produce similar fragmentation for sequencing of neutral oligosaccharides. N-(1-naphthyl)ethylenediamine dihydrochloride was then used as both the matrix and the Cl- dopant to evaluate the extent of structural information that can be obtained by negative-ion fragmentation from [M+Cl]- using laser-induced dissociation (LID)-MS/MS for linkage assignment of gluco-oligosaccharides and for typing of blood-group ABO(H) and Lewis antigens on either type 1 or type 2 backbone-chains.
Collapse
Affiliation(s)
- Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; GuangDong Bio-healtech Advanced, Foshan, 528315, China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China
| | - Lingpeng Zhan
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Zhao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jinyu Zhou
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Huanyu Gao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Wenchun Xie
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; GuangDong Bio-healtech Advanced, Foshan, 528315, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| |
Collapse
|
16
|
Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem 2018; 410:4015-4038. [DOI: 10.1007/s00216-018-1014-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
17
|
Calvano CD, Cataldi TRI, Kögel JF, Monopoli A, Palmisano F, Sundermeyer J. Structural Characterization of Neutral Saccharides by Negative Ion MALDI Mass Spectrometry Using a Superbasic Proton Sponge as Deprotonating Matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1666-1675. [PMID: 28466430 DOI: 10.1007/s13361-017-1679-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 05/22/2023]
Abstract
The superbasic proton sponge 1,8-bis(tripyrrolidinylphosphazenyl)naphthalene (TPPN) has been successfully employed for the structural characterization of neutral saccharides, cyclodextrins, and saccharide alditols by matrix assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Owing to its inherently high basicity, TPPN is capable of deprotonating neutral carbohydrates (M) providing an efficient and simple way to produce gas-phase [M - H]- ions. Highly informative negative ions MS/MS spectra showing several diagnostic fragment ions were obtained, mainly A-type cross-ring and C-type glycosidic cleavages. Indeed, cross-ring cleavages of monosaccharides with formation of 0,2A, 0,3A, 2,4A, 2,5A, 3,5A, and 0,3X product ions dominate the MS/MS spectra. A significant difference between reducing (e.g., lactose, maltose) and non-reducing disaccharides (e.g., sucrose, trehalose) was observed. Though disaccharides with the anomeric positions blocked give rise to deprotonated molecules, [M - H]-, at m/z 341.1, reducing ones exhibited a peak at m/z 340.1, most likely as radical anion, [M - H•- H]-•. The superiority of TPPN was clearly demonstrated by comparison with well recognized matrices, such as 2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone (positive ion mode) and nor-harman (negative ion mode). MALDI MS/MS experiments on isotopically labeled sugars have greatly supported the interpretation of plausible fragmentation pathways. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Julius F Kögel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
- FB Biologie/Chemie, Universität Bremen, Leobener Str. im NW2, 28359, Bremen, Germany
| | - Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Jorge Sundermeyer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| |
Collapse
|
18
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
19
|
Weißflog J, Svatoš A. 1,8-Di(piperidinyl)-naphthalene – rationally designed MAILD/MALDI matrix for metabolomics and imaging mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra17237g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of small molecules requires special matrices, which do not generate interfering signals below m/z 500.
Collapse
Affiliation(s)
- Jerrit Weißflog
- Mass Spectrometry/Proteomics Research Group Max Planck Institute for Chemical Ecology
- 07745 Jena
- Germany
| | - Aleš Svatoš
- Mass Spectrometry/Proteomics Research Group Max Planck Institute for Chemical Ecology
- 07745 Jena
- Germany
| |
Collapse
|