1
|
Sibat M, Mai T, Tanniou S, Biegala I, Hess P, Jauffrais T. Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific). Toxins (Basel) 2023; 15:642. [PMID: 37999505 PMCID: PMC10674433 DOI: 10.3390/toxins15110642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Algal toxins pose a serious threat to human and coastal ecosystem health, even if their potential impacts are poorly documented in New Caledonia (NC). In this survey, bivalves and seawater (concentrated through passive samplers) from bays surrounding Noumea, NC, collected during the warm and cold seasons were analyzed for algal toxins using a multi-toxin screening approach. Several groups of marine microalgal toxins were detected for the first time in NC. Okadaic acid (OA), azaspiracid-2 (AZA2), pectenotoxin-2 (PTX2), pinnatoxin-G (PnTX-G), and homo-yessotoxin (homo-YTX) were detected in seawater at higher levels during the summer. A more diversified toxin profile was found in shellfish with brevetoxin-3 (BTX3), gymnodimine-A (GYM-A), and 13-desmethyl spirolide-C (SPX1), being confirmed in addition to the five toxin groups also found in seawater. Diarrhetic and neurotoxic toxins did not exceed regulatory limits, but PnTX-G was present at up to the limit of the threshold recommended by the French Food Safety Authority (ANSES, 23 μg kg-1). In the present study, internationally regulated toxins of the AZA-, BTX-, and OA-groups by the Codex Alimentarius were detected in addition to five emerging toxin groups, indicating that algal toxins pose a potential risk for the consumers in NC or shellfish export.
Collapse
Affiliation(s)
- Manoëlla Sibat
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Tepoerau Mai
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, 98800 Nouméa, New Caledonia; (T.M.); (T.J.)
- Institut Louis Malardé (ILM), 98713 Papeete, Tahiti, French Polynesia
| | - Simon Tanniou
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Isabelle Biegala
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM110, 13288 Marseille, France;
| | - Philipp Hess
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, 98800 Nouméa, New Caledonia; (T.M.); (T.J.)
| |
Collapse
|
2
|
Preparation of Ciguatoxin Reference Materials from Canary Islands (Spain) and Madeira Archipelago (Portugal) Fish. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ciguatoxins (CTXs) are naturally occurring neurotoxins that can accumulate in fish and cause Ciguatera Poisoning (CP) in seafood consumers. Ciguatoxic fish have been detected in tropical and subtropical regions of the world including the Pacific and Indian Oceans, the Caribbean Sea, and more recently in the northeast Atlantic Ocean. The biogeographic distribution of ciguatoxic fish appears to be expanding; however, the paucity of CTX standards and reference materials limits the ability of public health authorities to monitor for these toxins in seafood supply chains. Recent reports establish that Caribbean Ciguatoxin-1 (C-CTX1) is the principal toxin responsible for CP cases and outbreaks in the northeast Atlantic Ocean and that C-CTX congener profiles in contaminated fish samples match those from the Caribbean Sea. Therefore, in this work, C-CTX reference materials were prepared from fish obtained from the northeast Atlantic Ocean. The collection of fish specimens (e.g., amberjack, grouper, or snapper) was screened for CTX-like toxicity using the in vitro sodium channel mouse neuroblastoma cytotoxicity assay (N2a cell assay). Muscle and liver tissues from toxic specimens were pooled for extraction and purified products were ultimately profiled and quantified by comparison with authentic C-CTX1 using LC-MS/MS. This work presents a detailed protocol for the preparation of purified C-CTX reference materials to enable continued research and monitoring of the ciguatera public health hazard. To carry out this work, C-CTX1 was isolated and purified from fish muscle and liver tissues obtained from the Canary Islands (Spain) and Madeira archipelago (Portugal).
Collapse
|
3
|
Sakaguchi Y, Kawamura R, Nakayama E, Ako K, Kawasue S, Koga R, Yoshida H, Nohta H. Selective analysis of the okadaic acid group in shellfish samples using fluorous derivatization coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122681. [PMID: 33878533 DOI: 10.1016/j.jchromb.2021.122681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Okadaic acid (OA) group are diarrheal shellfish poison that accumulates in the midgut glands of shellfish. It is difficult to remove these poisons by normal cooking because they are thermally stable and hydrophobicity. Therefore, in order to prevent foodborne disease due to shellfish poison, analysis by liquid chromatography (LC)-tandem mass spectrometry (MS/MS) before shipment is necessary. Herein the selective analytical method for OA group in shellfish sample using fluorous derivatization coupled with LC-MS/MS was developed. OA group were derivatized with the fluorous alkylamine reagent by condensing agent, and the obtained derivatives were separated with fluorous LC column (Fluofix-II 120E, 250 × 2.0 mm i.d., 5 μm, Fujifilm Wako Pure Chemical). The derivatized OA group were selective retained by fluorous LC column and accurate analysis was enabled. The present method was applied to the analysis of OA and dinophysistoxin-1 (DTX-1) in scallop midgut gland which is the certified reference material provided by national metrology institute of Japan. As a result of analysis using the present method with DTX-2 as the internal standard, the quantitative value were in agreement with the certified value.
Collapse
Affiliation(s)
- Yohei Sakaguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Rina Kawamura
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Erina Nakayama
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Kenta Ako
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Shimba Kawasue
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Reiko Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Hideyuki Yoshida
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Hitoshi Nohta
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan.
| |
Collapse
|
4
|
Liigand P, Liigand J, Kaupmees K, Kruve A. 30 Years of research on ESI/MS response: Trends, contradictions and applications. Anal Chim Acta 2020; 1152:238117. [PMID: 33648645 DOI: 10.1016/j.aca.2020.11.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
The variation of ionization efficiency for different compounds has puzzled researchers since the invention of the electrospray mass spectrometry (ESI/MS). Ionization depends on the properties of the compound, eluent, matrix, and instrument. Despite significant research, some aspects have remained unclear. For example, research groups have reached contradicting conclusions regarding the ionization processes. One of the best-known is the significance of the logP value for predicting the ionization efficiency. In this tutorial review, we analyse the methodology used for ionization efficiency measurements as well as the most important trends observed in the data. Additionally, we give suggestions regarding the measurement methodology and modelling strategies to yield meaningful and consistent ionization efficiency data. Finally, we have collected a wide range of ionization efficiency values from the literature and evaluated the consistency of these data. We also make this collection available for everyone for downloading as well as for uploading additional and new ionization efficiency data. We hope this GitHub based ionization efficiency repository will allow a joined community effort to collect and unify the current knowledge about the ionization processes.
Collapse
Affiliation(s)
- Piia Liigand
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Jaanus Liigand
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Karl Kaupmees
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Anneli Kruve
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 106 91, Stockholm, Sweden.
| |
Collapse
|
5
|
Deeds JR, Stutts WL, Celiz MD, MacLeod J, Hamilton AE, Lewis BJ, Miller DW, Kanwit K, Smith JL, Kulis DM, McCarron P, Rauschenberg CD, Burnell CA, Archer SD, Borchert J, Lankford SK. Dihydrodinophysistoxin-1 Produced by Dinophysis norvegica in the Gulf of Maine, USA and Its Accumulation in Shellfish. Toxins (Basel) 2020; 12:toxins12090533. [PMID: 32825482 PMCID: PMC7551465 DOI: 10.3390/toxins12090533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
Dihydrodinophysistoxin-1 (dihydro-DTX1, (M-H)-m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and in 2018 during blooms of the dinoflagellate Dinophysis norvegica. Toxin screening by protein phosphatase inhibition (PPIA) first detected the presence of diarrhetic shellfish poisoning-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) failed to detect okadaic acid (OA, (M-H)-m/z 803.5), dinophysistoxin-1 (DTX1, (M-H)-m/z 817.5), or dinophysistoxin-2 (DTX2, (M-H)-m/z 803.5) in samples collected during the bloom. Bioactivity-guided fractionation followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS measurements showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of D. norvegica in both years, with results correlating well with PPIA testing. Two laboratory cultures of D. norvegica isolated from the 2018 bloom were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. Estimated concentrations of dihydro-DTX1 were >0.16 ppm in multiple shellfish species (max. 1.1 ppm) during the blooms in 2016 and 2018. Assuming an equivalent potency and molar response to DTX1, the authority initiated precautionary shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish in the Gulf of Maine region and studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance.
Collapse
Affiliation(s)
- Jonathan R. Deeds
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA; (W.L.S.); (M.D.C.)
- Correspondence: ; Tel.: +1-(240)-402-1474
| | - Whitney L. Stutts
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA; (W.L.S.); (M.D.C.)
| | - Mary Dawn Celiz
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA; (W.L.S.); (M.D.C.)
| | - Jill MacLeod
- Maine Department of Marine Resources, West Boothbay Harbor, ME 05475, USA; (J.M.); (A.E.H.); (B.J.L.); (D.W.M.); (K.K.)
| | - Amy E. Hamilton
- Maine Department of Marine Resources, West Boothbay Harbor, ME 05475, USA; (J.M.); (A.E.H.); (B.J.L.); (D.W.M.); (K.K.)
| | - Bryant J. Lewis
- Maine Department of Marine Resources, West Boothbay Harbor, ME 05475, USA; (J.M.); (A.E.H.); (B.J.L.); (D.W.M.); (K.K.)
| | - David W. Miller
- Maine Department of Marine Resources, West Boothbay Harbor, ME 05475, USA; (J.M.); (A.E.H.); (B.J.L.); (D.W.M.); (K.K.)
| | - Kohl Kanwit
- Maine Department of Marine Resources, West Boothbay Harbor, ME 05475, USA; (J.M.); (A.E.H.); (B.J.L.); (D.W.M.); (K.K.)
| | - Juliette L. Smith
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA;
| | - David M. Kulis
- Department of Biology, Woods Hole Oceanographic Institute, Woods Hole, MA 02543, USA;
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada;
| | - Carlton D. Rauschenberg
- Bigelow Analytical Services, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA; (C.D.R.); (C.A.B.); (S.D.A.)
| | - Craig A. Burnell
- Bigelow Analytical Services, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA; (C.D.R.); (C.A.B.); (S.D.A.)
| | - Stephen D. Archer
- Bigelow Analytical Services, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA; (C.D.R.); (C.A.B.); (S.D.A.)
| | - Jerry Borchert
- Washington State Department of Health, Olympia, WA 98504, USA;
| | - Shelley K. Lankford
- Washington State Department of Health Public Health Laboratories, Shoreline, WA 98155, USA;
| |
Collapse
|
6
|
Qiu J, Wright EJ, Thomas K, Li A, McCarron P, Beach DG. Semiquantitation of Paralytic Shellfish Toxins by Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry Using Relative Molar Response Factors. Toxins (Basel) 2020; 12:toxins12060398. [PMID: 32560098 PMCID: PMC7354571 DOI: 10.3390/toxins12060398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Paralytic shellfish toxins (PSTs) are a complex class of analogs of the potent neurotoxin saxitoxin (STX). Since calibration standards are not available for many PSTs, including C-11 hydroxyl analogs called M-toxins, accurate quantitation by liquid chromatography–mass spectrometry (LC-MS) can be challenging. In the absence of standards, PSTs are often semiquantitated using standards of a different analog (e.g., STX), an approach with a high degree of uncertainty due to the highly variable sensitivity between analytes in electrospray ionization. Here, relative molar response factors (RMRs) were investigated for a broad range of PSTs using common LC-MS approaches in order to improve the quantitation of PSTs for which standards are unavailable. First, several M-toxins (M1-M6, M9 and dcM6) were semipurified from shellfish using preparative gel filtration chromatography and quantitated using LC-charged aerosol detection (LC-CAD). The RMRs of PST certified reference materials (CRMs) and M-toxins were then determined using selective reaction monitoring LC-MS/MS and full scan LC-high-resolution MS (LC-HRMS) methods in positive and negative electrospray ionization. In general, RMRs for PSTs with similar chemical structures were comparable, but varied significantly between subclasses, with M-toxins showing the lowest sensitivity. For example, STX showed a greater than 50-fold higher RMR than M4 and M6 by LC-HRMS. The MS instrument, scan mode and polarity also had significant impacts on RMRs and should be carefully considered when semiquantitating PSTs by LC-MS. As a demonstration of their utility, the RMRs determined were applied to the semiquantitation of PSTs in contaminated mussels, showing good agreement with results from calibration with CRMs.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Fisheries, Ocean University of China, Qingdao 266003, China;
| | - Elliott J. Wright
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
| | - Krista Thomas
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (E.J.W.); (K.T.); (P.M.)
- Correspondence: ; Tel.: +1-(902)-426-8274
| |
Collapse
|
7
|
Roué M, Smith KF, Sibat M, Viallon J, Henry K, Ung A, Biessy L, Hess P, Darius HT, Chinain M. Assessment of Ciguatera and Other Phycotoxin-Related Risks in Anaho Bay (Nuku Hiva Island, French Polynesia): Molecular, Toxicological, and Chemical Analyses of Passive Samplers. Toxins (Basel) 2020; 12:toxins12050321. [PMID: 32413988 PMCID: PMC7291316 DOI: 10.3390/toxins12050321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Ciguatera poisoning is a foodborne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates from the genera Gambierdiscus and Fukuyoa. The suitability of Solid Phase Adsorption Toxin Tracking (SPATT) technology for the monitoring of dissolved CTXs in the marine environment has recently been demonstrated. To refine the use of this passive monitoring tool in ciguateric areas, the effects of deployment time and sampler format on the adsorption of CTXs by HP20 resin were assessed in Anaho Bay (Nuku Hiva Island, French Polynesia), a well-known ciguatera hotspot. Toxicity data assessed by means of the mouse neuroblastoma cell-based assay (CBA-N2a) showed that a 24 h deployment of 2.5 g of resin allowed concentrating quantifiable amounts of CTXs on SPATT samplers. The CTX levels varied with increasing deployment time, resin load, and surface area. In addition to CTXs, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were also detected in SPATT extracts using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), consistent with the presence of Gambierdiscus and Prorocentrum species in the environment, as assessed by quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTS) metabarcoding analyses conducted on passive window screen (WS) artificial substrate samples. Although these preliminary findings await further confirmation in follow-up studies, they highlight the usefulness of SPATT samplers in the routine surveillance of CP risk on a temporal scale, and the monitoring of other phycotoxin-related risks in ciguatera-prone areas.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement, UMR 241 EIO, 98702 Faa’a, Tahiti, French Polynesia
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-413
| | - Kirsty F. Smith
- Cawthron Institute, Nelson 7042, New Zealand; (K.F.S.); (L.B.)
| | | | - Jérôme Viallon
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Kévin Henry
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - André Ung
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Laura Biessy
- Cawthron Institute, Nelson 7042, New Zealand; (K.F.S.); (L.B.)
| | - Philipp Hess
- Ifremer, DYNECO, 44000 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Mireille Chinain
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| |
Collapse
|
8
|
Lépinay A, Turpin V, Mondeguer F, Grandet-Marchant Q, Capiaux H, Baron R, Lebeau T. First insight on interactions between bacteria and the marine diatom Haslea ostrearia: Algal growth and metabolomic fingerprinting. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
|