1
|
Izquierdo-Sandoval D, Sancho JV, Hernández F, Portoles T. Approaches for GC-HRMS Screening of Organic Microcontaminants: GC-APCI-IMS-QTOF versus GC-EI-QOrbitrap. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2436-2448. [PMID: 39887319 DOI: 10.1021/acs.est.4c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
This study explores the capabilities of GC-APCI-IMS-QTOF MS and GC-EI-QOrbitrap MS in screening applications and different strategies for wide-scope screening of organic microcontaminants using target suspect and nontarget approaches. On one side, GC-APCI-IMS-QTOF MS excels at preserving molecular information and adds ion mobility separation, facilitating screening through the list of componentized features containing accurate mass, retention time, CCS, and fragmentation data. On the other side, the extensive and robust fragmentation of GC-EI-QOrbitrap MS allows the application of different strategies for target and nontarget approaches using the NIST library spectra. Our findings revealed that GC-EI-QOrbitrap MS is more sensitive in target approaches. Automated workflows for suspect screening in GC-APCI-IMS-QTOF MS minimize false annotations but face challenges with false negatives due to in-source fragmentation and limitations when using in silico fragmentation tools. Conversely, a nontarget approach in GC-EI-QOrbitrap MS can reliably identify unknowns but results in more false annotations in complex matrices. This work highlights the strengths and limitations of each system and guides for their optimal application for wide-scope screening in environmental and food safety applications.
Collapse
Affiliation(s)
- David Izquierdo-Sandoval
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| | - Tania Portoles
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, Castellón de la Plana 12071, Spain
| |
Collapse
|
2
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 PMCID: PMC12012859 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
| | - Gordon J. Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Anna S. Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - P. Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
3
|
Liu Y, Li H, Wang Z, Zhang Q, Bai H, Lv Q. Nontargeted analysis and comparison strategies for volatile and semivolatile substances in toys made of different materials. CHEMOSPHERE 2023; 342:140170. [PMID: 37716563 DOI: 10.1016/j.chemosphere.2023.140170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
A nontargeted broad-spectrum analysis method for unknown volatile and semivolatile substances in toys was established by gas chromatography-Orbitrap high-resolution mass spectrometry. Based on the NIST spectrum library, unknown substances could be accurately identified by comprehensive scoring, retention index, chemical ionization, and fine comparison of ion fragments. For substances not included in the library, the molecular formulas of unknown substances were retrieved through online compound databases. Possible structural formulas were verified by high-resolution spectra and fragmentation mechanisms. Taking teether toys as an example, the substances differences of products made of different materials were compared through the digitization of chemical composition. Specifically, 59 substances were identified in 50 teether toys. The toys made of two different materials each had their own substance distribution, and the types and quantities of substances in thermoplastic polyurethanes samples were more than those in silicone samples. Substances with high risk included phenol, N-methylaniline, cyclohexanone, and 4-tert-amylphenol. This work can serve as a reference for the identification of unknown substances in toys and other products, as well as for the comparison the chemical composition of products made of different materials. Thus, this work has positive significance in promoting the quality and safety of toys and reducing chemical harm to children.
Collapse
Affiliation(s)
- Yahui Liu
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou, 310018, China
| | - Zhijuan Wang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
4
|
Song Z, Shi M, Ren X, Wang L, Wu Y, Fan Y, Zhang Y, Xu Y. An integrated non-targeted and targeted analysis approach for identification of semi-volatile organic compounds in indoor dust. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132202. [PMID: 37562352 DOI: 10.1016/j.jhazmat.2023.132202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Household dust contains a wide variety of semi-volatile organic compounds (SVOCs) that may pose health risks. We developed a method integrating non-targeted analysis (NTA) and targeted analysis (TA) to identify SVOCs in indoor dust. Based on a combined use of gas and liquid chromatography with high-resolution mass spectrometry, an automated, time-efficient NTA workflow was developed, and high accuracy was observed. A total of 128 compounds were identified at confidence level 1 or 2 in NIST standard reference material dust (SRM 2585). Among them, 113 compounds had not been reported previously, and this suggested the value of NTA in characterizing contaminants in dust. Additionally, TA was done to avoid the loss of trace compounds. By integrating data obtained from the NTA and TA approaches, SVOCs in SRM 2585 were prioritized based on exposure and chemical toxicity. Six of the top 20 compounds have never been reported in SRM 2585, including melamine, dinonyl phthalate, oxybenzone, diheptyl phthalate, drometrizole, and 2-phenylphenol. Additionally, significant influences of analytical instruments and sample preparation on NTA results were observed. Overall, the developed method provided a powerful tool for identifying SVOCs in indoor dust, which is necessary to obtain a more complete understanding of chemical exposures and risks in indoor environments.
Collapse
Affiliation(s)
- Zidong Song
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Meng Shi
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Xiaopeng Ren
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Luyang Wang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Yili Wu
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Yujie Fan
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA.
| |
Collapse
|
5
|
Unified Method for Target and Non-Target Monitoring of Pesticide Residues in Fruits and Fruit Juices by Gas Chromatography-High Resolution Mass Spectrometry. Foods 2023; 12:foods12040739. [PMID: 36832813 PMCID: PMC9955418 DOI: 10.3390/foods12040739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A new polyvalent wide-scope analytical method, valid for both raw and processed (juices) fruits, combining target and non-target strategies, has been developed and validated to determine low concentrations of 260 pesticides, as well as many potential non-target substances and metabolites. The target approach has been validated according to SANTE Guide requirements. Trueness, precision, linearity, and robustness values were validated in raw fruit (apple) and juice (apple juice) as representative solid and liquid food commodities. Recoveries were between 70-120% and two ranges of linearity were observed: 0.5-20 μg kg-1 (0.5-20 μg L-1 apple juice) and 20-100 μg kg-1 (20-100 μg L-1 apple juice). The limits of quantification (LOQs) reached were lower than 0.2 μg kg-1 in apple (0.2 μg L-1 apple juice) in most cases. The developed method, based on QuEChERS extraction followed by gas chromatography-high resolution mass spectrometry (GC-HRMS), achieves part-per-trillions lower limits, which allowed the detection of 18 pesticides in commercial samples. The non-target approach is based on a retrospective analysis of suspect compounds, which has been optimized to detect up to 25 additional compounds, increasing the scope of the method. This made it possible to confirm the presence of two pesticide metabolites which were not considered in the target screening, phtamlimide and tetrahydrophthalimide.
Collapse
|
6
|
Mofidfar M, Song X, Kelly JT, Rubenstein MH, Zare RN. Silicone Wristband Spray Ionization Mass Spectrometry for Combined Exposome and Metabolome Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Xiaowei Song
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - John T. Kelly
- Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA
| | | | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
7
|
Samon SM, Hammel SC, Stapleton HM, Anderson KA. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. ENVIRONMENT INTERNATIONAL 2022; 169:107339. [PMID: 36116363 PMCID: PMC9713950 DOI: 10.1016/j.envint.2022.107339] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Personal chemical exposure assessment is necessary to determine the frequency and magnitude of individual chemical exposures, especially since chemicals present in everyday environments may lead to adverse health outcomes. In the last decade, silicone wristbands have emerged as a new chemical exposure assessment tool and have since been utilized for assessing personal exposure to a wide range of chemicals in a variety of populations. Silicone wristbands can be powerful tools for quantifying personal exposure to chemical mixtures in a single sample, associating exposure with health outcomes, and potentially overcoming some of the challenges associated with quantifying the chemical exposome. However, as their popularity grows, it is crucial that they are used in the appropriate context and within the limits of the technology. This review serves as a guide for researchers interested in utilizing silicone wristbands as a personal exposure assessment tool. Along with briefly discussing the passive sampling theory behind silicone wristbands, this review performs an in-depth comparison of wristbands to other common exposure assessment tools, including biomarkers of exposure measured in biospecimens, and evaluates their utility in exposure assessments and epidemiological studies. Finally, this review includes recommendations for utilizing silicone wristbands to evaluate personal chemical exposure and provides suggestions on what research is needed to recognize silicone wristbands as a premier chemical exposure assessment tool.
Collapse
Affiliation(s)
- Samantha M Samon
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Stephanie C Hammel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Kim A Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
8
|
Koelmel JP, Xie H, Price EJ, Lin EZ, Manz KE, Stelben P, Paige MK, Papazian S, Okeme J, Jones DP, Barupal D, Bowden JA, Rostkowski P, Pennell KD, Nikiforov V, Wang T, Hu X, Lai Y, Miller GW, Walker DI, Martin JW, Godri Pollitt KJ. An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry. EXPOSOME 2022; 2:osac007. [PMID: 36483216 PMCID: PMC9719826 DOI: 10.1093/exposome/osac007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 04/16/2023]
Abstract
Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Xie
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Elizabeth Z Lin
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | | | - Paul Stelben
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Matthew K Paige
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Stefano Papazian
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Joseph Okeme
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Dean P Jones
- School of Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dinesh Barupal
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - John A Bowden
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | | | - Thanh Wang
- MTM Research Centre, Örebro University, Örebro, Sweden
| | - Xin Hu
- School of Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Yunjia Lai
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Gary W Miller
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Douglas I Walker
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Jonathan W Martin
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Krystal J Godri Pollitt
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
9
|
Li H, Liu Y, Wang Z, Zhang Q, Xing J, Lv Q. Nontargeted analysis of potential volatile chemicals in correction stationery by using headspace gas chromatography-Orbitrap mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Unconventional and user-friendly sampling techniques of semi-volatile organic compounds present in an indoor environment: An approach to human exposure assessment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Wacławik M, Rodzaj W, Wielgomas B. Silicone Wristbands in Exposure Assessment: Analytical Considerations and Comparison with Other Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041935. [PMID: 35206121 PMCID: PMC8872583 DOI: 10.3390/ijerph19041935] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Humans are exposed to numerous potentially harmful chemicals throughout their lifetime. Although many studies have addressed this issue, the data on chronic exposure is still lacking. Hence, there is a growing interest in methods and tools allowing to longitudinally track personal exposure to multiple chemicals via different routes. Since the seminal work, silicone wristbands (WBs) have been increasingly used to facilitate human exposure assessment, as using WBs as a wearable sampler offers new insights into measuring chemical risks involved in many ambient and occupational scenarios. However, the literature lacks a detailed overview regarding methodologies being used; a comprehensive comparison with other approaches of personal exposure assessment is needed as well. Therefore, the aim of this review is fourfold. First, we summarize hitherto conducted research that employed silicone WBs as personal passive samplers. Second, all pre-analytical and analytical steps used to obtain exposure data are discussed. Third, we compare main characteristics of WBs with key features of selected matrices used in exposure assessment, namely urine, blood, hand wipes, active air sampling, and settled dust. Finally, we discuss future needs of research employing silicone WBs. Our work shows a variety of possibilities, advantages, and caveats associated with employment of silicone WBs as personal passive samplers. Although further research is necessary, silicone WBs have already been proven valuable as a tool for longitudinal assessment of personal exposure.
Collapse
|
12
|
Fuentes ZC, Schwartz YL, Robuck AR, Walker DI. Operationalizing the Exposome Using Passive Silicone Samplers. CURRENT POLLUTION REPORTS 2022; 8:1-29. [PMID: 35004129 PMCID: PMC8724229 DOI: 10.1007/s40726-021-00211-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.
Collapse
Affiliation(s)
- Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Yuri Levin Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| |
Collapse
|
13
|
Gupta S, Aga D, Pruden A, Zhang L, Vikesland P. Data Analytics for Environmental Science and Engineering Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10895-10907. [PMID: 34338518 DOI: 10.1021/acs.est.1c01026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of new data acquisition and handling techniques has opened the door to alternative and more comprehensive approaches to environmental monitoring that will improve our capacity to understand and manage environmental systems. Researchers have recently begun using machine learning (ML) techniques to analyze complex environmental systems and their associated data. Herein, we provide an overview of data analytics frameworks suitable for various Environmental Science and Engineering (ESE) research applications. We present current applications of ML algorithms within the ESE domain using three representative case studies: (1) Metagenomic data analysis for characterizing and tracking antimicrobial resistance in the environment; (2) Nontarget analysis for environmental pollutant profiling; and (3) Detection of anomalies in continuous data generated by engineered water systems. We conclude by proposing a path to advance incorporation of data analytics approaches in ESE research and application.
Collapse
Affiliation(s)
- Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diana Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14226, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|