1
|
Pietzsch J, Laube M, Bechmann N, Pietzsch FJ, Kniess T. Protective effects of 2,3-diaryl-substituted indole-based cyclooxygenase-2 inhibitors on oxidative modification of human low density lipoproteins in vitro. Clin Hemorheol Microcirc 2017; 61:615-32. [PMID: 25547413 DOI: 10.3233/ch-141923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has been suggested that 2,3-diaryl-substituted indole-based cyclooxygenase-2 (COX-2) inhibitors (2,3-diaryl-indole coxibs) do not only appear as potent anti-inflammatory agents but also show the ability to scavenge reactive oxygen species (ROS). This led to the hypothesis that 2,3-diaryl-indole coxibs also may act as potent inhibitors of oxidative modification of low-density lipoprotein (LDL), which is considered a key factor in atherogenesis. The aim of this study was to explore i) the reactivity of a series of new synthesized 2,3-diaryl-indoles with several well characterized LDL oxidation systems and ii) subsequent effects on an inflammatory/atherogenic microenvironment. The results demonstrate that under the present experimental conditions 2,3-diaryl-indoles showed potent ROS scavenging activity and were able to markedly inhibit LDL oxidation. Subsequently, this led to a substantial decrease of modified LDL uptake by scavenger receptors in THP-1 macrophages in vitro and in rats in vivo. Moreover, modified LDL-mediated monocyte/neutrophil adhesion to endothelial cells, macrophage NFκB activation, as well as macrophage and endothelial cell cytokine release was diminished in vitro. The reduction of modified LDL-induced atherogenic effects by antioxidant 2,3-diaryl-indole coxibs may widen the therapeutic window of COX-2 targeted treatment.
Collapse
Affiliation(s)
- Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Nicole Bechmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Franz-Jacob Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, Medical Faculty and University Hospital, Centre for Translational Bone, Joint, and Soft Tissue Research, Dresden, Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| |
Collapse
|
2
|
Song Y, Liao J, Zha C, Wang B, Liu CC. Simultaneous determination of 3-chlorotyrosine and 3-nitrotyrosine in human plasma by direct analysis in real time-tandem mass spectrometry. Acta Pharm Sin B 2015; 5:482-6. [PMID: 26579479 PMCID: PMC4629445 DOI: 10.1016/j.apsb.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/13/2015] [Accepted: 06/20/2015] [Indexed: 11/15/2022] Open
Abstract
A novel method for the simultaneous determination of 3-nitrotyrosine (NT) and 3-chlorotyrosine (CT) in human plasma has been developed based on direct analysis in real time–tandem mass spectrometry (DART–MS/MS). Analysis was performed in the positive ionization mode using multiple reaction monitoring (MRM) of the ion transitions at m/z 216.2/170.1 for CT, m/z 227.2/181.1 for NT and m/z 230.2/184.2 for the internal standard, d3-NT. The assay was linear in the ranges 0.5–100 μg/mL for CT and 4–100 μg/mL for NT with corresponding limits of detection of 0.2 and 2 μg/mL. Intra- and inter-day precisions and accuracies were respectively <15% and ±15%. Matrix effects were also evaluated. The method is potentially useful for high throughput analysis although sensitivity needs to be improved before it can be applied in clinical research.
Collapse
Affiliation(s)
- Yuqiao Song
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
- Corresponding author. Tel.: +86 10 66937199/ 66936174; fax: +86 10 66939194.
| | - Jie Liao
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
| | - Cheng Zha
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Medical Experiment and Analysis Center of PLA General Hospital, Beijing 100853, China
| | - Charles C. Liu
- ASPEC Technologies Limited Beijing, Beijing, 100102, China
| |
Collapse
|
3
|
Mouls L, Silajdzic E, Haroune N, Spickett CM, Pitt AR. Development of novel mass spectrometric methods for identifying HOCl-induced modifications to proteins. Proteomics 2009; 9:1617-31. [PMID: 19253297 DOI: 10.1002/pmic.200800391] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Indexed: 11/07/2022]
Abstract
Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label-free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl-oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS(2) analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS(3) fragment ions from the immonium ions and collisionally-activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS(3) fragment ions were also identified for 2-hydroxytryptophan and 5-hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.
Collapse
Affiliation(s)
- Laetitia Mouls
- Faculty of Biological and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
4
|
Painter RG, Valentine VG, Lanson NA, Leidal K, Zhang Q, Lombard G, Thompson C, Viswanathan A, Nauseef WM, Wang G, Wang G. CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 2006; 45:10260-9. [PMID: 16922501 PMCID: PMC2931333 DOI: 10.1021/bi060490t] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Production of hypochlorous acid (HOCl) in neutrophils, a critical oxidant involved in bacterial killing, requires chloride anions. Because the primary defect of cystic fibrosis (CF) is the loss of chloride transport function of the CF transmembrane conductance regulator (CFTR), we hypothesized that CF neutrophils may be deficient in chlorination of bacterial components due to a limited chloride supply to the phagolysosomal compartment. Multiple approaches, including RT-PCR, immunofluorescence staining, and immunoblotting, were used to demonstrate that CFTR is expressed in resting neutrophils at the mRNA and protein levels. Probing fractions of resting neutrophils isolated by Percoll gradient fractionation and free flow electrophoresis for CFTR revealed its presence exclusively in secretory vesicles. The CFTR chloride channel was also detected in phagolysosomes, a special organelle formed after phagocytosis. Interestingly, HL-60 cells, a human promyelocytic leukemia cell line, upregulated CFTR expresssion when induced to differentiate into neutrophils with DMSO, strongly suggesting its potential role in mature neutrophil function. Analyses by gas chromatography and mass spectrometry (GC-MS) revealed that neutrophils from CF patients had a defect in their ability to chlorinate bacterial proteins from Pseudomonas aeruginosa metabolically prelabeled with [(13)C]-l-tyrosine, unveiling defective intraphagolysosomal HOCl production. In contrast, both normal and CF neutrophils exhibited normal extracellular production of HOCl when stimulated with phorbol ester, indicating that CF neutrophils had the normal ability to produce this oxidant in the extracellular medium. This report provides evidence which suggests that CFTR channel expression in neutrophils and its dysfunction affect neutrophil chlorination of phagocytosed bacteria.
Collapse
Affiliation(s)
- Richard G. Painter
- Departments of Medicine and Genetics, Gene Therapy Program, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Vincent G. Valentine
- Lung Transplantation Program, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Nicholas A. Lanson
- Departments of Medicine and Genetics, Gene Therapy Program, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kevin Leidal
- The Inflammation Program, Department of Medicine, The University of Iowa, and the Veterans Affairs Medical Center, Iowa City, IA, 52242
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Gisele Lombard
- Lung Transplantation Program, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Connie Thompson
- Lung Transplantation Program, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Anand Viswanathan
- Departments of Medicine and Genetics, Gene Therapy Program, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - William M. Nauseef
- The Inflammation Program, Department of Medicine, The University of Iowa, and the Veterans Affairs Medical Center, Iowa City, IA, 52242
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Guoshun Wang
- Departments of Medicine and Genetics, Gene Therapy Program, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Zaikin VG, Halket JM. Review: derivatization in mass spectrometry-6. Formation of mixed derivatives of polyfunctional compounds. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:611-36. [PMID: 16322667 DOI: 10.1255/ejms.773] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The review describes chemical transformations of multifunctional compounds (amino acids and peptides, amino alcohols, amino thiols, hydroxy acids, oxo acids, oxo alcohols, compounds containing simultaneously three or more different groups etc.) by using step-wise or one-step modification or protection of functional groups. Some chemical aspects of mixed derivatization performed for improving the physical-chemical properties and mass spectral characteristics are discussed. Application of mixed derivatization to qualitative and quantitative analysis of various multifunctional compounds mainly in biological fluids and other matrices by gas chromatography/mass spectrometry in electron ionization, chemical ionization, negative-ion chemical ionization and selected ion monitoring modes is considered.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prospect 29, 119991 Moscow, Russia.
| | | |
Collapse
|
6
|
Kopprasch S, Pietzsch J, Westendorf T, Kruse HJ, Grässler J. The pivotal role of scavenger receptor CD36 and phagocyte-derived oxidants in oxidized low density lipoprotein-induced adhesion to endothelial cells. Int J Biochem Cell Biol 2004; 36:460-71. [PMID: 14687924 DOI: 10.1016/j.biocel.2003.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adhesion of phagocytes to endothelial cells constitutes a crucial step in atherogenesis. Oxidized low density lipoproteins (LDL) are supposed to facilitate the adhesion process. We investigated the molecular mechanisms by which mildly and extensively hypochlorite-oxidized LDL force adhesion of murine macrophages and human neutrophils to human umbilical venous endothelial cells. After 1h of co-incubation of macrophages, endothelial cells, and lipoproteins adhesion significantly increased to 160+/-13% (S.E.M., n=5) in the presence of mildly oxidized lipoprotein, and 210+/-11% (S.E.M., n=5) in the presence of extensively oxidized lipoprotein. Similar results were obtained with neutrophils. CD36 antibody (FA6-152) significantly reduced adhesion to 102+/-7% (S.E.M., n=5) using mildly oxidized low density lipoprotein and to 179+/-16% (S.E.M., n=5) using extensively oxidized low density lipoprotein. Native high density lipoprotein and to a lesser extent methionine-oxidized high density lipoprotein significantly counteracted the effects of low density lipoprotein. Prior incubation of endothelial cells with modified lipoproteins followed by their removal and subsequent incubation with macrophages or neutrophils resulted in only minor changes of adhesion. This suggests that the direct contact of low density lipoprotein with phagocytes followed by activation of a respiratory burst with release of reactive oxygen species facilitates the adhesion process. Accordingly, the addition of antioxidants (superoxide dismutase and catalase) to the co-incubation medium was followed by a significant decrease in phagocyte adhesion. It is concluded that oxidized low density lipoprotein-induced respiratory burst activation of phagocytes with subsequent release of oxidants constitutes a crucial step in promoting the adhesion of phagocytes to endothelial cells.
Collapse
Affiliation(s)
- Steffi Kopprasch
- Department of Internal Medicine 3, Carl Gustav Carus Medical School, University of Technology Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
7
|
John Wiley & Sons, Ltd.. Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:1013-1024. [PMID: 14505330 DOI: 10.1002/jms.412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|