1
|
Fakruzzaman M, Warzych E, Pawlak P, Madeja ZE, Cieslak A, Szkudelska K, Lechtanska J, Lechniak D. Effect of IVM media supplementation with a blend of n6/n3 fatty acids on the quality of bovine oocytes and blastocysts. Theriogenology 2025; 242:117427. [PMID: 40239492 DOI: 10.1016/j.theriogenology.2025.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Optimizing in vitro maturation (IVM) media can enhance blastocyst yield and quality. This study explores the effects of supplementing IVM medium with a blend of two essential polyunsaturated fatty acids (LA and ALA) at a ratio observed in the serum of experimental heifers on the quality of bovine oocytes, cumulus cells (CC), and blastocysts. The in vitro embryo production protocol was based on commercial media (Bioscience, UK). Oocyte-cumulus complexes (COCs) from slaughterhouse-derived ovaries were matured in a 100 μM LA + ALA blend at a 3:1 ratio (75 μM LA + 25 μM ALA). Following maturation, selected COCs underwent reactive oxygen species (ROS) and glutathione (GSH) measurements in oocytes and apoptosis detection in CC (TUNEL). The remaining oocytes were fertilized and cultured to the blastocyst stage, where cell counts and apoptosis levels were assessed. Our findings indicate that the LA + ALA blend positively influenced specific quality parameters in oocytes (reduced ROS level) and blastocysts (increased total cell number (TCN) and a lower apoptotic index (AI)). However, the treatment did not significantly affect other parameters, such as AI in CCs, cleavage, and blastocyst rates or ICM: TCN and ICM: TE ratios. This study demonstrates that a moderate (100 μM) fatty acid (FA) dose benefits oocytes and blastocysts. Given the opposing effects of individual FAs and the limited data on FA blends, our results suggest that ALA may counteract the adverse effects of LA. Mitigation of oxidative stress and AI and an increased TCN underscore the importance of optimized FA supplementation in IVM media.
Collapse
Affiliation(s)
- Md Fakruzzaman
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland; Department of Genetics and Animal Breeding, Patuakhali Science and Technology University, Outer Campus, Barishal, 8210, Bangladesh.
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Joanna Lechtanska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| |
Collapse
|
2
|
Kassim Y, Sheng H, Xu G, Jin H, Iqbal T, Elashry M, Zhang K. Integrated Multi-Omics Analysis Reveals Key Regulators of Bovine Oocyte Maturation. Int J Mol Sci 2025; 26:3973. [PMID: 40362214 PMCID: PMC12071811 DOI: 10.3390/ijms26093973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
A well-regulated metabolism is crucial for optimal oocyte development and embryonic health. However, the metabolic framework governing oocyte maturation remains poorly understood. Using bovine oocytes as a model, we examined metabolomic and transcriptomic alterations during the transition from the germinal vesicle (GV) to the metaphase II (MII) stage. Our findings reveal distinct metabolic shifts, including suppressed β-oxidation combined with the accumulation of long-chain fatty acids (LCFAs). Notably, progesterone emerged as a key regulator of meiotic resumption through its influence on cAMP levels. We also observed enhanced glycolysis, moderate activation of the citric acid cycle (TCA cycle), and suppression of oxidative phosphorylation (OXPHOS), alongside reduced urea cycle flux and shifts in amino acid metabolism favoring glutamate synthesis. Intriguingly, discrepancies between metabolic and transcriptional activities in pathways such as the TCA cycle and nucleotide metabolism suggest asynchronous regulation. These findings provide a comprehensive multi-omics resource, advancing our understanding of the dynamic metabolic and transcriptional landscape during bovine oocyte maturation.
Collapse
Affiliation(s)
- Yassin Kassim
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Animal and Poultry Production, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt
| | - Hao Sheng
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangjun Xu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Jin
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tariq Iqbal
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Elashry
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kun Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wu J, Wu J, Xu Y. Effects of pentoxifylline on mouse oocytes maturation and quality in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:310-315. [PMID: 39906611 PMCID: PMC11790189 DOI: 10.22038/ijbms.2024.77926.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/31/2024] [Indexed: 02/06/2025]
Abstract
Objectives To investigate the impact of Pentoxifylline (PTX) on the in vitro maturation (IVM) of mouse oocytes and its effect on oocyte quality. Materials and Methods This experimental study involved culturing mouse oocytes in an IVM medium with varying PTX concentrations (0-100 μM). Post-culture, oocytes were assessed for nuclear and cytoplasmic maturation and quality indicators, including germinal vesicle breakdown (GVBD), first polar body extrusion (PB1E), cortical granules (CGs) distribution, spindle structure, chromosome alignment, and intracellular reactive oxygen species (ROS) levels. Results Treatment with PTX at 10, 25, and 50 μM concentrations significantly enhanced the nuclear maturation rates of oocytes. The optimal concentration was found to be 10 μM, as it resulted in the most favorable cytoplasmic maturation, characterized by improved distribution of CGs, spindle structure, and chromosome alignment. Additionally, treatment with 10 μM PTX effectively reduced reactive oxygen species (ROS) levels. Conclusion PTX supplementation at specific concentrations enhances mouse oocyte maturation and quality, potentially by facilitating CG distribution, spindle integrity, and chromosome alignment and by reducing ROS production.
Collapse
Affiliation(s)
- Junjiao Wu
- Department of Obstetrics-gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jianbo Wu
- Department of Obstetrics-gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yanyan Xu
- Department of Obstetrics-gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
4
|
Pasquariello R, Pennarossa G, Arcuri S, Fernandez-Fuertes B, Lonergan P, Brevini TAL, Gandolfi F. Sperm fertilizing ability in vitro influences bovine blastocyst miRNA content. Theriogenology 2024; 222:1-9. [PMID: 38581760 DOI: 10.1016/j.theriogenology.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755-5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225-3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Beatriz Fernandez-Fuertes
- Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Etrusco A, Laganà AS, Chiantera V, Buzzaccarini G, Unfer V. Myo-inositol in assisted reproductive technology from bench to bedside. Trends Endocrinol Metab 2024; 35:74-83. [PMID: 37798243 DOI: 10.1016/j.tem.2023.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Inositols are insulin-sensitizing compounds of promising efficacy in the management of polycystic ovary syndrome (PCOS). On the one hand, myo-inositol (myo-ins) plays a regulatory role in male and female reproductive function, influencing the development of oocytes, spermatozoa, and embryos. On the other hand, high concentrations of D-chiro-inositol (D-chiro-ins) in the ovary may adversely affect oocyte quality. This review analyses the available literature, which encourages the clinical use of myo-ins in assisted reproductive technologies (ARTs) due to its beneficial effects on female and male reproduction.
Collapse
Affiliation(s)
- Andrea Etrusco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Unit of Obstetrics and Gynecology, 'Paolo Giaccone' Hospital, Palermo, Italy
| | - Antonio Simone Laganà
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Unit of Obstetrics and Gynecology, 'Paolo Giaccone' Hospital, Palermo, Italy; The Experts Group on Inositol in Basic and Clinical Research (EGOI)
| | - Vito Chiantera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Unit of Gynecologic Oncology, National Cancer Institute - IRCCS - Fondazione 'G. Pascale', Naples, Italy
| | - Giovanni Buzzaccarini
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI); UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy.
| |
Collapse
|
6
|
Brown AM, McCarthy HE. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. HUM FERTIL 2023; 26:1544-1552. [PMID: 37102567 DOI: 10.1080/14647273.2023.2194554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/17/2023] [Indexed: 04/28/2023]
Abstract
A significant problem associated with assisted reproductive technologies (ART) is recurrent treatment failure which can be attributed to the age-associated decline in oocyte quality. Co-enzyme Q10 (CoQ10) is an antioxidant and essential component of the mitochondrial electron transport chain. It is reported that de novo CoQ10 production declines with ageing and coincides with age-related decline in fertility, leading to CoQ10 supplementation being advocated to enhance response to ovarian stimulation and improve oocyte quality. CoQ10 supplementation was found to improve fertilization rates, embryo maturation rates and embryo quality when used before and during in vitro fertilization (IVF) and in vitro maturation (IVM) treatment in women aged 31 and over. Regarding oocyte quality, CoQ10 was able to reduce high rates of chromosomal abnormalities and oocyte fragmentation, as well as improve mitochondrial function. Proposed mechanisms of CoQ10 function include restoration of reactive oxygen species imbalance, preventing DNA damage and oocyte apoptosis, as well as restoration of Krebs cycle downregulation from ageing. In this literature review, we provide an overview of the use of CoQ10 in improving the success of IVF and IVM in older women, and additionally assess the impact of CoQ10 on oocyte quality and discuss potential mechanisms of action by CoQ10 on the oocyte.
Collapse
Affiliation(s)
- Alexandria M Brown
- Cardiff University School of Biosciences, Cardiff University, Cardiff, UK
| | - Helen E McCarthy
- Cardiff University School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Zhu J, Yang Q, Li H, Wang Y, Jiang Y, Wang H, Cong L, Xu J, Shen Z, Chen W, Zeng X, Wang M, Lei M, Sun Y. Sirt3 deficiency accelerates ovarian senescence without affecting spermatogenesis in aging mice. Free Radic Biol Med 2022; 193:511-525. [PMID: 36336229 DOI: 10.1016/j.freeradbiomed.2022.10.324] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Sirtuin-3 (SIRT3), the main deacetylase in the mitochondria, maintains cellular energy metabolism and redox balance by deacetylating mitochondrial proteins in a NAD+-dependent manner. Growing evidence indicates that decreased Sirt3 expression is involved in various age-related maladies. However, the role of Sirt3 in ovarian and testicular senescence remains unclear. In this study, we observed that sirt3 expression showed age-dependent decreases in the ovary but not the testis. We generated Sirt3 null mice via CRISPR/Cas9-mediated genome editing. We observed that Sirt3 deletion accelerated ovarian aging, as shown by a decrease in offspring sizes, the follicle reserve and oocytes markers (Bmp15 and Gdf9) as well as increased expression of aging and inflammation-related genes (p16, p21, Il-1α, and Il-1β). Sirt3 deficiency led to an accumulation of superoxide and disruption of spindle assembly accompanied by mitochondrial dysfunction (uneven mitochondria distribution, decreased mitochondrial potential as well as reduced mitochondrial DNA content) in aging oocytes. Meanwhile, in ovaries of Sirt3 null mice, the impaired mitochondrial functions were shown by decreases in mitochondrial respiratory complexes, along with lower levels of mitochondrial fusion (OPA1, MFN2) and fission (DRP1, FIS1) proteins. er levels of mitochondrial fusion (OPA1, MFN2) and fission (DRP1, FIS1) proteins. Interestingly, Sirt3-/- male mice exhibited no changes on the testicular histology, serum testosterone levels, germ-cell proliferation, and differentiation of spermatogonia. Meiotic prophase I spermatocytes were also normal. Levels of superoxide, mitochondrial potential as well as expression of mitochondrially-encoded genes were unaltered in Sirt3-/- testes. Collectively, the results indicated that SIRT3 plays a critical role in maintaining the ovarian follicle reserve and oocyte quality in aging mice, suggesting its important role in controlling ovarian senescence.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujiao Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luping Cong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianmin Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoyang Shen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Disease (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Traut M, Kowalczyk-Zieba I, Boruszewska D, Jaworska J, Lukaszuk K, Woclawek-Potocka I. Mitochondrial DNA content and developmental competence of blastocysts derived from pre-pubertal heifer oocytes. Theriogenology 2022; 191:207-220. [PMID: 35998404 DOI: 10.1016/j.theriogenology.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
In the cattle-breeding industry, there is an increasing demand for in vitro embryo production from pre-pubertal heifers. In this study, we evaluated the differences in mitochondrial DNA content, oxidative stress, and developmental competence in blastocysts derived from pre-pubertal and pubertal heifers. We found higher mitochondrial DNA copy numbers in blastocysts produced from pre-pubertal heifers than from pubertal heifers. In the group of pre-pubertal animals, there was a significantly lower number of blastocysts produced in vitro from the same number of collected oocytes, and these blastocysts did not differ from those obtained from pubertal oocytes in terms of their morphological quality. The morphologically appropriate blastocysts derived from pre-pubertal heifers had higher concentrations of reactive oxygen species and glutathione. In blastocysts derived from pre-pubertal heifers, we found alterations in the expression of gene markers for developmental competence, which correlated with higher mitochondrial DNA content, suggesting a lower quality of blastocysts derived from pre-pubertal animals than from pubertal animals. The inadequate redox balance in blastocysts obtained from pre-pubertal females, along with higher mitochondrial DNA copy number, as well as differential gene expression of markers of developmental competence, elucidate the low quality of blastocysts derived from pre-pubertal animals, despite their unaltered morphology.
Collapse
Affiliation(s)
- Milena Traut
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210, Gdansk, Poland; Invicta Research and Development Center, 81-740, Sopot, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland.
| |
Collapse
|
9
|
Soltani L, Ghaneialvar H, Mahdavi AH. An overview of the role of metallic and nonmetallic nanoparticles and their salts during sperm cryopreservation and in vitro embryo manipulation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:262-279. [PMID: 36120977 DOI: 10.1080/15257770.2022.2124269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The cryopreservation of spermatozoa and the in vitro embryo production are valuable tools used in a variety of species, including humans, livestock, fish, and aquatic invertebrates. Sperm cryopreservation has been used to maintain or increase the genetic diversity of threatened species. Reactive oxygen species (ROS) are molecules derived from oxygen, being formed as byproducts of cellular metabolism. During cryopreservation of sperm and other in vitro manipulations of oocytes and embryos, ROS production is dramatically increased. In cells, low, medium, and high levels of ROS lead to different outcomes, apoptosis, auto-phagocytosis, and necrosis, respectively. ROS produced by cells can be neutralized by intracellular antioxidant systems, including enzymes as well as non-enzymatic antioxidants. Free radicals and oxidative stress can be major factors influencing in vitro manipulations. In this review, we discuss the role that metallic and nonmetallic nanoparticles and their salts play in the modulation of oxidative stress during in vitro embryo production and cryopreservation of sperm.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
10
|
Lemseffer Y, Terret ME, Campillo C, Labrune E. Methods for Assessing Oocyte Quality: A Review of Literature. Biomedicines 2022; 10:biomedicines10092184. [PMID: 36140285 PMCID: PMC9495944 DOI: 10.3390/biomedicines10092184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The rate of infertility continues to rise in the world for several reasons, including the age of conception and current lifestyle. We list in this paper potential non-invasive and invasive techniques to assess oocyte quality. We searched the database PubMed using the terms “oocytes AND quality AND evaluation”. In the first part, we study the morphological criteria, compartment by compartment, to then focus in a second part on more objective techniques such as genetics, molecular, apoptosis, or human follicular fluid that contain biologically active molecules. The main criteria used to assess oocyte quality are morphological; however, several other techniques have been studied in women to improve oocyte quality assessment, but most of them are invasive and not usable in routine.
Collapse
Affiliation(s)
- Yassir Lemseffer
- Hospices Civils de Lyon, Service de Médecine de la Reproduction, 59 Bd. Pinel, 69500 Bron, France
- Faculté de Médecine, Université Claude Bernard, Lyon 01, 8 Av. Rockefeller, 69008 Lyon, France
- Correspondence:
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75006 Paris, France
| | - Clément Campillo
- LAMBE, Université d’Évry, CNRS, CEA, Université Paris-Saclay, 91025 Évry-Courcouronnes, France
| | - Elsa Labrune
- Hospices Civils de Lyon, Service de Médecine de la Reproduction, 59 Bd. Pinel, 69500 Bron, France
- Faculté de Médecine, Université Claude Bernard, Lyon 01, 8 Av. Rockefeller, 69008 Lyon, France
- INSERM U1208, Stem Cells and Brain Institute, 69500 Bron, France
| |
Collapse
|
11
|
Acupuncture for Female Infertility: Discussion on Action Mechanism and Application. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3854117. [PMID: 35832528 PMCID: PMC9273356 DOI: 10.1155/2022/3854117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
A higher incidence of female infertility has been reported with an unexpectedly early appearance in recent years. The female infertility treatment and application of assisted reproductive technology have recently gained immense interest from scientists. Many studies have discussed the beneficial effects of acupuncture on female infertility. With advancements in science and medical technology, acupuncture-related research has increased in investigating its effectiveness in treating female infertility. This review focuses on a compilation of research in recent years on acupuncture for female infertility treatment and the exploration of the underlying mechanism. For this purpose, literature was searched using various search engines like PubMed, Web of Science, and Google Scholar. The search was refined by only focusing on recent studies on acupuncture effectiveness and mechanism in female infertility and evaluating pregnancy outcomes.
Collapse
|
12
|
Moniruzzaman M, Modak A, Islam M, Khatun A, Alam M, Akter I, Kabir AKMA, Hashem M. L–carnitine improves developmental competence of buffalo oocytes in vitro. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2022. [DOI: 10.4103/2305-0500.356843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Yang SG, Joe SY, Bae JW, Heo GD, Park HJ, Koo DB. Melatonin Protects Against Mdivi-1-Induced Abnormal Spindle Assembly and Mitochondrial Superoxide Production During Porcine Oocyte Maturation. Front Cell Dev Biol 2021; 9:693969. [PMID: 34307369 PMCID: PMC8297652 DOI: 10.3389/fcell.2021.693969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial division inhibitor 1 (Mdivi-1) reportedly provides a close connection between oocyte maturation and mitochondrial function in pigs. N-acetyl-5-methoxy-tryptamine (melatonin) is known to be a representative antioxidant with the ability to rehabilitate meiotic maturation of porcine oocytes. However, the ability of melatonin to recover Mdivi-1-mediated disruption of spindle formation during meiotic maturation of porcine oocytes during in vitro maturation (IVM) has not been studied. Here, we first investigated changes in mitochondrial length, such as fragmentation and elongation form, in mature porcine oocytes during IVM. Mature oocytes require appropriate mitochondrial fission for porcine oocyte maturation. We identified a dose-dependent reduction in meiotic maturation in porcine oocytes following Mdivi-1 treatment (50, 75, and 100 μM). We also confirmed changes in mitochondrial fission protein levels [dynamin-related protein 1 phosphorylation at serine 616 (pDRP1-Ser616) and dynamin-related protein 1 (DRP1)], mitochondrial membrane potential, and ATP production in 75 μM Mdivi-1-treated oocytes. As expected, Mdivi-1 significantly reduced mitochondrial function and DRP1 protein levels and increased spindle abnormalities in porcine oocytes. In addition, we confirmed that melatonin restores abnormal spindle assembly and reduces meiotic maturation rates by Mdivi-1 during porcine oocyte maturation. Interestingly, the expression levels of genes that reduce DNA damage and improve tubulin formation were enhanced during porcine meiotic maturation. Taken together, these results suggest that melatonin has direct beneficial effects on meiotic maturation through tubulin formation factors during porcine oocyte maturation.
Collapse
Affiliation(s)
- Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Seung-Yeon Joe
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Jin-Wook Bae
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Gyeong-Deok Heo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
14
|
Kuzma-Hunt AG, Truong VB, Favetta LA. Glucocorticoids, Stress and Delta-9 Tetrahydrocannabinol (THC) during Early Embryonic Development. Int J Mol Sci 2021; 22:7289. [PMID: 34298908 PMCID: PMC8307766 DOI: 10.3390/ijms22147289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Elevated molecular stress in women is known to have negative impacts on the reproductive development of oocytes and the embryos prior to implantation. In recent years, the prevalence of cannabis use among women of reproductive age has risen due to its ability to relieve psychological stress and nausea, which are mediated by its psychoactive component, ∆-9-tetrahydrocannabinol (THC). Although cannabis is the most popular recreational drug of the 21st century, much is unknown about its influence on molecular stress in reproductive tissues. The current literature has demonstrated that THC causes dose- and time-dependent alterations in glucocorticoid signaling, which have the potential to compromise morphology, development, and quality of oocytes and embryos. However, there are inconsistencies across studies regarding the mechanisms for THC-dependent changes in stress hormones and how either compounds may drive or arrest development. Factors such as variability between animal models, physiologically relevant doses, and undiscovered downstream gene targets of both glucocorticoids and THC could account for such inconsistencies. This review evaluates the results of studies which have investigated the effects of glucocorticoids on reproductive development and how THC may alter stress signaling in relevant tissues.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.G.K.-H.); (V.B.T.)
| |
Collapse
|
15
|
Paccola CC, Souza GS, Freitas IMM, Souza JC, Martins LL, Vendramini V, Miraglia SM. Does maternal exposure to nicotine affect the oocyte quality and reproductive capacity in adult offspring? Toxicol Appl Pharmacol 2021; 426:115638. [PMID: 34242569 DOI: 10.1016/j.taap.2021.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/05/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Gonadal development begins in the intrauterine phase and females from most species are born with an established oocyte reserve. Exposure to drugs during gestation can compromise the offspring health, also affecting the gametes quality. Nicotine, the main component of cigarettes, is an oxidant agent capable of altering the fertility in men and women. As female gametes are susceptible to oxidative stress, this drug can damage the oolemma and affect oocyte maturation, induce errors during chromosomal segregation and DNA fragmentation. Oocyte mitochondria are particularly susceptible to injuries, contributing to the oocyte quality loss and embryonic development disruption. Thus, considering the high number of women who smoke during pregnancy, while significant events are occurring in the embryo for future fertility of offspring, we seek to verify the quality of the oocytes from adult rats exposed to nicotine during intrauterine phase and breastfeeding. Pregnant Wistar rats received nicotine by osmotic mini-pumps and the female progenies were evaluated in adulthood for oocyte quality (viability, lipid peroxidation, generation of reactive oxygen species and mitochondrial integrity) and reproductive capacity. Embryos (3dpc) and fetuses (20dpc) generated by these rats were also evaluated. The results showed that the dose of 2 mg/kg/day of nicotine through placenta and breast milk does not affect the number of oocytes and the fertility capacity of adult rats. However, it causes some morphological alterations in oocytes, mitochondrial changes, embryonic fragmentation and disruption of fetal development. The malformations in fetuses generated from these gametes can also indicate the occurrence of epigenetic modifications.
Collapse
Affiliation(s)
- C C Paccola
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil.
| | - G S Souza
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - I M M Freitas
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - J C Souza
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - L L Martins
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - V Vendramini
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - S M Miraglia
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Sun WS, Jang H, Park MR, Oh KB, Lee H, Hwang S, Xu LJ, Hwang IS, Lee JW. N-acetyl-L-cysteine Improves the Developmental Competence of Bovine Oocytes and Embryos Cultured In Vitro by Attenuating Oxidative Damage and Apoptosis. Antioxidants (Basel) 2021; 10:antiox10060860. [PMID: 34071998 PMCID: PMC8229896 DOI: 10.3390/antiox10060860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been suggested to negatively affect oocyte and embryo quality and developmental competence, resulting in failure to reach full term. In this study, we investigated the effect of N-acetyl-L-cysteine (NAC), a cell-permeating antioxidant, on developmental competence and the quality of oocytes and embryos upon supplementation (0.1–10 mM) in maturation and culture medium in vitro using slaughterhouse-derived oocytes and embryos. The results show that treating oocytes with 1.0 mM NAC for 8 h during in vitro maturation attenuated the intracellular reactive oxygen species (ROS) (p < 0.05) and upregulated intracellular glutathione levels (p < 0.01) in oocytes. Interestingly, we found that NAC affects early embryonic development, not only in a dose-dependent, but also in a stage-specific, manner. Significantly (p < 0.05) decreased cleavage rates (90.25% vs. 81.46%) were observed during the early stage (days 0–2), while significantly (p < 0.05) increased developmental rates (38.20% vs. 44.46%) were observed during the later stage (from day 3) of embryonic development. In particular, NAC supplementation decreased the proportion of apoptotic blastomeres significantly (p < 0.05), resulting in enhanced hatching capability and developmental rates during the in vitro culture of embryos. Taken together, our results suggest that NAC supplementation has beneficial effects on bovine oocytes and embryos through the prevention of apoptosis and the elimination of oxygen free radicals during maturation and culture in vitro.
Collapse
Affiliation(s)
- Wu-Sheng Sun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 55365, Korea; (W.-S.S.); (M.-R.P.); (K.B.O.); (H.L.); (S.H.)
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeollabuk-do 54896, Korea;
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 55365, Korea; (W.-S.S.); (M.-R.P.); (K.B.O.); (H.L.); (S.H.)
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 55365, Korea; (W.-S.S.); (M.-R.P.); (K.B.O.); (H.L.); (S.H.)
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 55365, Korea; (W.-S.S.); (M.-R.P.); (K.B.O.); (H.L.); (S.H.)
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 55365, Korea; (W.-S.S.); (M.-R.P.); (K.B.O.); (H.L.); (S.H.)
| | - Li-Jie Xu
- Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeollabuk-do 55365, Korea; (W.-S.S.); (M.-R.P.); (K.B.O.); (H.L.); (S.H.)
- Correspondence: (I.-S.H.); (J.-W.L.); Tel.: +82-63-238-7258 (I.-S.H.); +82-42-860-4428 (J.-W.L.)
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Correspondence: (I.-S.H.); (J.-W.L.); Tel.: +82-63-238-7258 (I.-S.H.); +82-42-860-4428 (J.-W.L.)
| |
Collapse
|
17
|
Bartkova A, Morovic M, Strejcek F, Murin M, Benc M, Percinic FP, Laurincik J. Characterization of porcine oocytes stained with Lissamine Green B and their developmental potential in vitro. Anim Reprod 2020; 17:e20200533. [PMID: 33791031 PMCID: PMC7995255 DOI: 10.1590/1984-3143-ar2020-0533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traditional methods for the evaluation of oocyte quality are based on morphological classification of the follicle, cumulus-oocyte complex, polar body and meiotic spindle. This study is focused on the differences between the morphological assessment of oocyte quality, the assessment based on Lissamine Green B (LB) staining and the analysis of oocytes using a proteomic approach. We evaluated the effectiveness of electrochemical and chemical parthenogenetic activation under our laboratory conditions and evaluated the applicability of Lissamine Green B staining of cumulus-oocyte complexes (COCs) as a non-invasive method for predicting the maturational and developmental competence of porcine oocytes cultured in vitro. We determined that chemical parthenogenetic activation using ionomycin and 6-dimethylaminopurine was slightly more effective than electrochemical activation. After oocyte selection according to LB staining, we found significant differences (P<0.05) between the LB- group and LB+ group and the control group in their maturation, cleavage rate and rate of blastocysts. Proteomic analyses identified a selection of proteins that were differentially expressed in each group of analysed oocytes. Oocytes of the LB- group exhibited an increased variability of proteins involved in transcription regulation, proteosynthesis and the protein folding crucial for oocyte maturation and further embryonic development. These results found a better competence of LB- oocytes in maturation, cleavage and ability to reach the blastocyst stage.
Collapse
Affiliation(s)
- Alexandra Bartkova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Martin Morovic
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Frantisek Strejcek
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Matej Murin
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Michal Benc
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Florina Popovska Percinic
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Jozef Laurincik
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
18
|
García-Martínez T, Vendrell-Flotats M, Martínez-Rodero I, Ordóñez-León EA, Álvarez-Rodríguez M, López-Béjar M, Yeste M, Mogas T. Glutathione Ethyl Ester Protects In Vitro -Maturing Bovine Oocytes against Oxidative Stress Induced by Subsequent Vitrification/Warming. Int J Mol Sci 2020; 21:ijms21207547. [PMID: 33066129 PMCID: PMC7588878 DOI: 10.3390/ijms21207547] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine whether the addition of glutathione ethyl ester (GSH-OEt) to the in vitro maturation (IVM) medium would improve the resilience of bovine oocytes to withstand vitrification. The effects of GSH-OEt on spindle morphology, levels of reactive oxygen species (ROS), mitochondrial activity and distribution, and embryo developmental potential were assessed together with the expression of genes with a role in apoptosis (BAX, BCL2), oxidative-stress pathways (GPX1, SOD1), water channels (AQP3), implantation (IFN-τ) and gap junctions (CX43) in oocytes and their derived blastocysts. Vitrification gave rise to abnormal spindle microtubule configurations and elevated ROS levels. Supplementation of IVM medium with GSH-OEt before vitrification preserved mitochondrial distribution pattern and diminished both cytoplasmic and mitochondrial ROS contents and percentages of embryos developing beyond the 8-cell stage were similar to those recorded in fresh non-vitrified oocytes. Although not significantly different from control vitrified oocytes, vitrified oocytes after GSH-OEt treatment gave rise to similar day 8-blastocyst and hatching rates to fresh non-vitrified oocytes. No effects of GSH-OEt supplementation were noted on the targeted gene expression of oocytes and derived blastocysts, with the exception of GPX1, AQP3 and CX43 in derived blastocysts. The addition of GSH-OEt to the IVM medium before vitrification may be beneficial for embryo development presumably as the consequence of additional anti-oxidant protection during IVM.
Collapse
Affiliation(s)
- Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
| | - Erika Alina Ordóñez-León
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Grupo InVitro, Tabasco 86040, Mexico
| | - Manuel Álvarez-Rodríguez
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, ES-17004 Girona, Spain;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Correspondence: ; Tel.: +34-696-64-51-27
| |
Collapse
|
19
|
In vitro Production of Porcine Embryos: Current Status and Possibilities – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This paper presents the current possibilities, state of knowledge and prospects of in vitro production (IVP) of pig embryos, which consists of in vitro oocyte maturation, in vitro fertilization and in vitro embryo culture. In pigs, oocyte maturation is one of the most important stages in the embryo IVP process. It determines the oocyte’s fertilization ability as well as its embryonic development. Through many research studies of the proper selection of oocytes and appropriate maturation medium composition (especially the addition of various supplements), the in vitro maturation of pig oocytes has been significantly improved. Recent studies have demonstrated that modifications of the diluents and in vitro fertilization media can reduce polyspermy. Furthermore, several adjustments of the porcine culture media with the addition of some supplements have enhanced the embryo quality and developmental competence. These updates show the progress of IVP in pigs that has been achieved; however, many problems remain unsolved.
Collapse
|
20
|
Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility. Int J Mol Sci 2020; 21:ijms21103592. [PMID: 32438750 PMCID: PMC7279321 DOI: 10.3390/ijms21103592] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian follicle steroidogenesis associated with embryo quality results in a successful pregnancy. Each follicle consists of an oocyte surrounded by granulosa cells, which secrete several steroid and peptide hormones. Follicles harvested from women who conceived after assisted reproductive therapy (ART) had significantly higher estradiol levels in follicular fluids than the follicles from women who failed to conceive after ART. The higher follicular estradiol levels correlate well with successful fertilization following ART. Mitochondria are the central sites for steroid hormone biosynthesis. The first and rate-limiting step in the biosynthesis of steroid hormones occurs in the mitochondria of granulosa cells. In the present study, we hypothesized that the mitochondria in granulosa cells are critical for maintaining oocyte quality and fertility capacity. This study aims to clarify the relationship between mitochondrial function and granulosa cell steroidogenesis, and the relationship between hormone levels and fertility capacity. Sera, follicular fluids and granulosa cells were obtained from individuals undergoing IVF-ET treatment. The oocyte numbers, oocyte quality, fertilization rate, and pregnancy rate were also recorded. The patients who provided the granulosa cells were further classified into four groups: endometriosis, ovarian endometrioma, endometriosis without ovarian endometrioma, and polycystic ovary syndrome (PCOS); patients with other female factor infertility and male factor infertility were used as controls. We measured the levels of estradiol (E2) by radioimmunoassay. Concurrently, we analyzed the mitochondrial mass and membrane potential, and apoptosis by flow cytometry using nonyl acridine orange, TMRE, Annexin V-FITC and PI. Mitochondrial morphology was visualized by transfection with pLV-mitoDsRed. In addition, we assessed the protein levels of steroidogenic enzymes, steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) by Western blot. The results showed significantly decreased serum E2 and follicular E2 levels, and decreased IVF outcomes, in the patients with endometriosis. Reduced mitochondrial mass and decreased mitochondrial membrane potential were correlated with lower E2. Furthermore, a significant decrease in StAR and 3β-HSD was found in patients with ovarian endometrioma. The enzyme levels of StAR and 3β-HSD were highly correlated with E2 levels. Finally, elevated cumulus cell apoptosis was found in the patient group with ovarian endometrioma and PCOS. In conclusion, mitochondrial dysfunction of human granulosa cells may contribute to the decline of steroidogenesis, decreased fertilization rate, oocyte maturation rate, and oocyte quality, and it can ultimately jeopardize fertility.
Collapse
|
21
|
Abstract
We have previously presented a stereological analysis of organelle distribution in human prophase I oocytes. In the present study, using a similar stereological approach, we quantified the distribution of organelles in human metaphase I (MI) oocytes also retrieved after ovarian stimulation. Five MI oocytes were processed for transmission electron microscopy and a classical manual stereological technique based on point-counting with an adequate stereological grid was used. Kruskal-Wallis and Mann-Whitney U-tests with Bonferroni correction were used to compare the means of relative volumes (Vv) occupied by organelles. In all oocyte regions, the most abundant organelles were mitochondria and smooth endoplasmic reticulum (SER) elements. No significant differences were observed in Vv of mitochondria, dictyosomes, lysosomes, or SER small and medium vesicles, tubular aggregates and tubules. Significant differences were observed in other organelle distributions: cortical vesicles presented a higher Vv (P = 0.004) in the cortex than in the subcortex (0.96% vs 0.1%) or inner cytoplasm (0.96% vs 0.1%), vesicles with dense granular contents had a higher Vv (P = 0.005) in the cortex than in the subcortex (0.1% vs 0%), and SER large vesicles exhibited a higher Vv (P = 0.011) in the inner cytoplasm than in the subcortex (0.2% vs 0%). Future stereological analysis of metaphase II oocytes and a combined quantitative data of mature and immature oocytes, will enable a better understanding of oocyte organelle distribution during in vivo maturation. Combined with molecular approaches, this may help improve stimulation protocols and in vitro maturation methods.
Collapse
|
22
|
Aiken CE, Tarry-Adkins JL, Spiroski AM, Nuzzo AM, Ashmore TJ, Rolfo A, Sutherland MJ, Camm EJ, Giussani DA, Ozanne SE. Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats. FASEB J 2019; 33:7758-7766. [PMID: 30888848 PMCID: PMC6529349 DOI: 10.1096/fj.201802772r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic fetal hypoxia is a common complication observed in human pregnancy, impacting pregnancies across global contexts. Exposure to chronic intrauterine hypoxia has major short- and long-term consequences for offspring health. However, the impact of chronic gestational hypoxia on female reproductive system development is unknown. We aimed to understand the impact of exposure to chronic fetal hypoxia on the developing female reproductive system. Wistar rat dams underwent normoxia (21%) or hypoxia (13%) during pregnancy. Postnatally, all female offspring were maintained in normoxic conditions into early adulthood. Female rats exposed to chronic gestational hypoxia (13%) during their intrauterine development had decreased ovarian primordial follicular reserve compared to controls (P < 0.05). Adult females who had been exposed to chronic fetal hypoxia had significantly reduced somatic ovarian telomere length (P < 0.05) and reduced ovarian protein expression of KU70, a critical component of the DNA-activated protein kinase repair complex (P < 0.01). Gene expression of NADPH oxidase 2-mediated oxidative stress markers was increased (P < 0.05). Exposure to chronic hypoxia during fetal development leads to accelerated aging of the somatic ovary and decreased ovarian reserve in adulthood. Ovarian aging is highly sensitive to gestational hypoxia, with implications for future fertility in next-generation offspring of high-risk pregnancies.-Aiken, C. E., Tarry-Adkins, J. L., Spiroski, A.-M., Nuzzo, A. M., Ashmore, T. J., Rolfo, A., Sutherland, M. J., Camm, E. J., Giussani, D. A., Ozanne, S. E. Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats.
Collapse
Affiliation(s)
- Catherine E. Aiken
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom;,Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom;,Correspondence: University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom. E-mail:
| | - Jane L. Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anna M. Nuzzo
- Dipartimento di Scienze Chirurgiche, Universita degli Studi di Torino, Turin, Italy
| | - Thomas J. Ashmore
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Alessandro Rolfo
- Dipartimento di Scienze Chirurgiche, Universita degli Studi di Torino, Turin, Italy
| | - Megan J. Sutherland
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J. Camm
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|