1
|
Yang R, Pan M, Guo J, Huang Y, Zhang QC, Deng T, Wang J. Mapping of the influenza A virus genome RNA structure and interactions reveals essential elements of viral replication. Cell Rep 2024; 43:113833. [PMID: 38416642 DOI: 10.1016/j.celrep.2024.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024] Open
Abstract
Influenza A virus (IAV) represents a constant public health threat. The single-stranded, segmented RNA genome of IAV is replicated in host cell nuclei as a series of 8 ribonucleoprotein complexes (vRNPs) with RNA structures known to exert essential function to support viral replication. Here, we investigate RNA secondary structures and RNA interactions networks of the IAV genome and construct an in vivo structure model for each of the 8 IAV genome segments. Our analyses reveal an overall in vivo and in virio resemblance of the IAV genome conformation but also wide disparities among long-range and intersegment interactions. Moreover, we identify a long-range RNA interaction that exerts an essential role in genome packaging. Disrupting this structure displays reduced infectivity, attenuating virus pathogenicity in mice. Our findings characterize the in vivo RNA structural landscape of the IAV genome and reveal viral RNA structures that can be targeted to develop antiviral interventions.
Collapse
Affiliation(s)
- Rui Yang
- The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Minglei Pan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiamei Guo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Huang
- The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Tao Deng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
2
|
Pannu J, Glenn JS. Programmable Antivirals and Just-in-Time Vaccines: Biosecurity Implications of Viral RNA Secondary Structure Targeting. Health Secur 2023; 21:81-84. [PMID: 36576394 DOI: 10.1089/hs.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jaspreet Pannu
- Jaspreet Pannu, MD, is a Resident Physician, Department of Medicine, Stanford University School of Medicine, Stanford, CA; and a Fellow, Center for Health Security, Johns Hopkins School of Public Health, Baltimore, MD
| | - Jeffrey S Glenn
- Jeffrey S. Glenn, MD, PhD, is the Joseph D. Grant Professor, Department of Medicine, and Professor, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA; and Director, ViRx@Stanford, Stanford Medicine, Stanford, CA. He is also a Physician, Veterans Administration Medical Center, Palo Alto, CA
| |
Collapse
|
3
|
Nalewaj M, Szabat M. Examples of Structural Motifs in Viral Genomes and Approaches for RNA Structure Characterization. Int J Mol Sci 2022; 23:ijms232415917. [PMID: 36555559 PMCID: PMC9784701 DOI: 10.3390/ijms232415917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between conserved structural motifs and their biological function in the virus replication cycle is the interest of many researchers around the world. RNA structure is closely related to RNA function. Therefore, technological progress in high-throughput approaches for RNA structure analysis and the development of new ones are very important. In this mini review, we discuss a few perspectives on the structural elements of viral genomes and some methods used for RNA structure prediction and characterization. Based on the recent literature, we describe several examples of studies concerning the viral genomes, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV). Herein, we emphasize that a better understanding of viral genome architecture allows for the discovery of the structure-function relationship, and as a result, the discovery of new potential antiviral therapeutics.
Collapse
|
4
|
Stincarelli MA, Rocca A, Antonelli A, Rossolini GM, Giannecchini S. Antiviral Activity of Oligonucleotides Targeting the SARS-CoV-2 Genomic RNA Stem-Loop Sequences within the 3'-End of the ORF1b. Pathogens 2022; 11:1286. [PMID: 36365037 PMCID: PMC9696570 DOI: 10.3390/pathogens11111286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/30/2023] Open
Abstract
Increased evidence shows vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited no long-term efficacy and limited worldwide availability, while existing antivirals and treatment options have only limited efficacy. In this study, the main objective was the development of antiviral strategies using nucleic acid-based molecules. To this purpose, partially overlapped 6-19-mer phosphorothioate deoxyoligonucleotides (S-ONs) designed on the SARS-CoV-2 genomic RNA stem-loop packaging sequences within the 3' end of the ORF1b were synthetized using the direct and complementary sequence. Among the S-ONs tested, several oligonucleotides exhibited a fifty percent inhibitory concentration antiviral activity ranging from 0.27 to 34 μM, in the absence of cytotoxicity. The S-ON with a scrambled sequence used in the same conditions was not active. Moreover, selected 10-mer S-ONs were tested using different infectious doses and against different SARS-CoV-2 variants, showing comparable antiviral activity that was abrogated when the central sequence was mutated. Experiments to evaluate the intracellular functional target localization of the S-ON inhibitory activity were also performed. Collectively the data indicate that the SARS-CoV-2 packaging region in the 3' end of the ORF1b may be a promising target candidate for further investigation to develop innovative nucleic-acid-based antiviral therapy.
Collapse
Affiliation(s)
| | - Arianna Rocca
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, I-50134 Florence, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| |
Collapse
|
5
|
Programmable antivirals targeting critical conserved viral RNA secondary structures from influenza A virus and SARS-CoV-2. Nat Med 2022; 28:1944-1955. [PMID: 35982307 PMCID: PMC10132811 DOI: 10.1038/s41591-022-01908-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/20/2022] [Indexed: 12/18/2022]
Abstract
Influenza A virus's (IAV's) frequent genetic changes challenge vaccine strategies and engender resistance to current drugs. We sought to identify conserved and essential RNA secondary structures within IAV's genome that are predicted to have greater constraints on mutation in response to therapeutic targeting. We identified and genetically validated an RNA structure (packaging stem-loop 2 (PSL2)) that mediates in vitro packaging and in vivo disease and is conserved across all known IAV isolates. A PSL2-targeting locked nucleic acid (LNA), administered 3 d after, or 14 d before, a lethal IAV inoculum provided 100% survival in mice, led to the development of strong immunity to rechallenge with a tenfold lethal inoculum, evaded attempts to select for resistance and retained full potency against neuraminidase inhibitor-resistant virus. Use of an analogous approach to target SARS-CoV-2, prophylactic administration of LNAs specific for highly conserved RNA structures in the viral genome, protected hamsters from efficient transmission of the SARS-CoV-2 USA_WA1/2020 variant. These findings highlight the potential applicability of this approach to any virus of interest via a process we term 'programmable antivirals', with implications for antiviral prophylaxis and post-exposure therapy.
Collapse
|
6
|
Zhang YN, Li N, Zhang QY, Liu J, Zhan SL, Gao L, Zeng XY, Yu F, Zhang HQ, Li XD, Deng CL, Shi PY, Yuan ZM, Yuan SP, Ye HQ, Zhang B. Rational design of West Nile virus vaccine through large replacement of 3' UTR with internal poly(A). EMBO Mol Med 2021; 13:e14108. [PMID: 34351689 PMCID: PMC8422072 DOI: 10.15252/emmm.202114108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
The genus Flavivirus comprises numerous emerging and re-emerging arboviruses causing human illness. Vaccines are the best approach to prevent flavivirus diseases. But pathogen diversities are always one of the major hindrances for timely development of new vaccines when confronting unpredicted flavivirus outbreaks. We used West Nile virus (WNV) as a model to develop a new live-attenuated vaccine (LAV), WNV-poly(A), by replacing 5' portion (corresponding to SL and DB domains in WNV) of 3'-UTR with internal poly(A) tract. WNV-poly(A) not only propagated efficiently in Vero cells, but also was highly attenuated in mouse model. A single-dose vaccination elicited robust and long-lasting immune responses, conferring full protection against WNV challenge. Such "poly(A)" vaccine strategy may be promising for wide application in the development of flavivirus LAVs because of its general target regions in flaviviruses.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qiu-Yan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shun-Li Zhan
- Beijing Shunlei Biotechnology Co. Ltd., Beijing, China
| | - Lei Gao
- Beijing Shunlei Biotechnology Co. Ltd., Beijing, China
| | - Xiang-Yue Zeng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fang Yu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, TX, USA
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Evaluation of Conserved RNA Secondary Structures within and between Geographic Lineages of Zika Virus. Life (Basel) 2021; 11:life11040344. [PMID: 33919874 PMCID: PMC8070784 DOI: 10.3390/life11040344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/28/2023] Open
Abstract
Zika virus (ZIKV), without a vaccine or an effective treatment approved to date, has globally spread in the last century. The infection caused by ZIKV in humans has changed progressively from mild to subclinical in recent years, causing epidemics with greater infectivity, tropism towards new tissues and other related symptoms as a product of various emergent ZIKV–host cell interactions. However, it is still unknown why or how the RNA genome structure impacts those interactions in differential evolutionary origin strains. Moreover, the genomic comparison of ZIKV strains from the sequence-based phylogenetic analysis is well known, but differences from RNA structure comparisons have barely been studied. Thus, in order to understand the RNA genome variability of lineages of various geographic distributions better, 410 complete genomes in a phylogenomic scanning were used to study the conservation of structured RNAs. Our results show the contemporary landscape of conserved structured regions with unique conserved structured regions in clades or in lineages within circulating ZIKV strains. We propose these structures as candidates for further experimental validation to establish their potential role in vital functions of the viral cycle of ZIKV and their possible associations with the singularities of different outbreaks that lead to ZIKV populations to acquire nucleotide substitutions, which is evidence of the local structure genome differentiation.
Collapse
|
8
|
Abstract
Recent studies have renewed interest in developing novel antiviral therapeutics and vaccines based on defective interfering particles (DIPs)—a subset of viral deletion mutants that conditionally replicate. Identifying and engineering DIPs require that viral cis- and trans-acting elements be accurately mapped. It has long been known that noncoding genomic regions can be obligate cis elements acted upon in trans by gene products. In viruses, cis elements regulate gene expression, encapsidation, and other maturation processes, but mapping these elements relies on targeted iterative deletion or laborious prospecting for rare spontaneously occurring mutants. Here, we introduce a method to comprehensively map viral cis and trans elements at single-nucleotide resolution by high-throughput random deletion. Variable-size deletions are randomly generated by transposon integration, excision, and exonuclease chewback and then barcoded for tracking via sequencing (i.e., random deletion library sequencing [RanDeL-seq]). Using RanDeL-seq, we generated and screened >23,000 HIV-1 variants to generate a single-base resolution map of HIV-1’s cis and trans elements. The resulting landscape recapitulated HIV-1’s known cis-acting elements (i.e., long terminal repeat [LTR], Ψ, and Rev response element [RRE]) and, surprisingly, indicated that HIV-1’s central DNA flap (i.e., central polypurine tract [cPPT] to central termination sequence [CTS]) is as critical as the LTR, Ψ, and RRE for long-term passage. Strikingly, RanDeL-seq identified a previously unreported ∼300-bp region downstream of RRE extending to splice acceptor 7 that is equally critical for sustained viral passage. RanDeL-seq was also used to construct and screen a library of >90,000 variants of Zika virus (ZIKV). Unexpectedly, RanDeL-seq indicated that ZIKV’s cis-acting regions are larger than the untranscribed (UTR) termini, encompassing a large fraction of the nonstructural genes. Collectively, RanDeL-seq provides a versatile framework for generating viral deletion mutants, enabling discovery of replication mechanisms and development of novel antiviral therapeutics, particularly for emerging viral infections.
Collapse
|
9
|
Berzal-Herranz A, Romero-López C. Two Examples of RNA Aptamers with Antiviral Activity. Are Aptamers the Wished Antiviral Drugs? Pharmaceuticals (Basel) 2020; 13:157. [PMID: 32707768 PMCID: PMC7463695 DOI: 10.3390/ph13080157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The current Covid-19 pandemic has pointed out some major deficiencies of the even most advanced societies to fight against viral RNA infections. Once more, it has been demonstrated that there is a lack of efficient drugs to control RNA viruses. Aptamers are efficient ligands of a great variety of molecules including proteins and nucleic acids. Their specificity and mechanism of action make them very promising molecules for interfering with the function encoded in viral RNA genomes. RNA viruses store essential information in conserved structural genomic RNA elements that promote important steps for the consecution of the infective cycle. This work describes two well documented examples of RNA aptamers with antiviral activity against highly conserved structural domains of the HIV-1 and HCV RNA genome, respectively, performed in our laboratory. They are two good examples that illustrate the potential of the aptamers to fill the therapeutic gaps in the fight against RNA viruses.
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain;
| | | |
Collapse
|
10
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
11
|
Berzal-Herranz A, Romero-López C, Berzal-Herranz B, Ramos-Lorente S. Potential of the Other Genetic Information Coded by the Viral RNA Genomes as Antiviral Target. Pharmaceuticals (Basel) 2019; 12:38. [PMID: 30871174 PMCID: PMC6469156 DOI: 10.3390/ph12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023] Open
Abstract
In addition to the protein coding information, viral RNA genomes code functional information in structurally conserved units termed functional RNA domains. These RNA domains play essential roles in the viral cycle (e.g., replication and translation). Understanding the molecular mechanisms behind their function is essential to understanding the viral infective cycle. Further, interfering with the function of the genomic RNA domains offers a potential means of developing antiviral strategies. Aptamers are good candidates for targeting structural RNA domains. Besides its potential as therapeutics, aptamers also provide an excellent tool for investigating the functionality of RNA domains in viral genomes. This review briefly summarizes the work carried out in our laboratory aimed at the structural and functional characterization of the hepatitis C virus (HCV) genomic RNA domains. It also describes the efforts we carried out for the development of antiviral aptamers targeting specific genomic domains of the HCV and the human immunodeficiency virus type-1 (HIV-1).
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Sara Ramos-Lorente
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| |
Collapse
|
12
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
14
|
Fernández-Sanlés A, Ríos-Marco P, Romero-López C, Berzal-Herranz A. Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Front Microbiol 2017; 8:546. [PMID: 28421048 PMCID: PMC5376627 DOI: 10.3389/fmicb.2017.00546] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements.
Collapse
Affiliation(s)
| | | | | | - Alfredo Berzal-Herranz
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina “López-Neyra,” Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| |
Collapse
|
15
|
Romero-López C, Barroso-delJesus A, Berzal-Herranz A. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Sci Rep 2017; 7:43415. [PMID: 28233845 PMCID: PMC5324077 DOI: 10.1038/srep43415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3'UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2'-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alicia Barroso-delJesus
- Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| |
Collapse
|
16
|
García-Sacristán A, Moreno M, Ariza-Mateos A, López-Camacho E, Jáudenes RM, Vázquez L, Gómez J, Martín-Gago JÁ, Briones C. A magnesium-induced RNA conformational switch at the internal ribosome entry site of hepatitis C virus genome visualized by atomic force microscopy. Nucleic Acids Res 2014; 43:565-80. [PMID: 25510496 PMCID: PMC4288189 DOI: 10.1093/nar/gku1299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 5' untranslated region of hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) element, composed of domains II-IV, which is required for cap-independent translation initiation. Little information on the 3D structure of the whole functional HCV IRES is still available. Here, we use atomic force microscopy to visualize the HCV IRES conformation in its natural sequence context, which includes the upstream domain I and the essential, downstream domains V and VI. The 574 nt-long molecule analyzed underwent an unexpected, Mg(2+)-induced switch between two alternative conformations: from 'open', elongated morphologies at 0-2 mM Mg(2+) concentration to a 'closed', comma-shaped conformation at 4-6 mM Mg(2+). This sharp transition, confirmed by gel-shift analysis and partial RNase T1 cleavage, was hindered by the microRNA miR-122. The comma-shaped IRES-574 molecules visualized at 4-6 mM Mg(2+) in the absence of miR-122 showed two arms. Our data support that the first arm would contain domain III, while the second one would be composed of domains (I-II)+(V-VI) thanks to a long-range RNA interaction between the I-II spacer and the basal region of domain VI. This reinforces the previously described structural continuity between the HCV IRES and its flanking domains I, V and VI.
Collapse
Affiliation(s)
- Ana García-Sacristán
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain
| | - Miguel Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain
| | - Ascensión Ariza-Mateos
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada 18016, Spain
| | - Elena López-Camacho
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Rosa M Jáudenes
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Jordi Gómez
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada 18016, Spain
| | - José Ángel Martín-Gago
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain
| |
Collapse
|
17
|
Nicholson BL, White KA. Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat Rev Microbiol 2014; 12:493-504. [PMID: 24931042 PMCID: PMC7097572 DOI: 10.1038/nrmicro3288] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-range RNA–RNA interactions, many of which span several thousands of nucleotides, have been discovered within the genomes of positive-strand RNA viruses. These interactions mediate fundamental viral processes, including translation, replication and transcription. In certain plant viruses that have uncapped, non-polyadenylated RNA genomes, translation initiation is facilitated by 3′ cap-independent translational enhancers (3′ CITEs) that are located in or near to their 3′ UTRs. These RNA elements function by binding to either the ribosome-recruiting eukaryotic translation initiation factor 4F (eIF4F) complex or ribosomal subunits, and they enhance translation initiation by engaging the 5′ end of the genome via a 5′-to-3′ RNA-based bridge. The activities of the internal ribosome entry sites (IRESs) in the 5′ UTRs of various viruses are modulated by RNA-based interactions between the IRESs and elements near to the 3′ ends of their genomes. In several plant viruses, translational recoding events, including ribosomal frameshifting and stop codon readthrough, have been found to rely on long-range RNA–RNA interactions. Multiple 5′-to-3′ base-pairing interactions facilitate genome circularization in flaviviruses, which has been proposed to reposition the 5′-bound RNA-dependent RNA polymerase (RdRp) to the initiation site of negative-strand synthesis at the 3′ terminus. The long-distance interaction between two cis-acting replication elements in tombusviruses generates a bipartite RNA platform for the assembly of the replicase complex and repositions the internally bound RdRp to the 3′ terminus. Tombusviruses also rely on several long-range interactions that mediate the premature termination of the RdRp during negative-strand synthesis that leads to transcription of subgenomic mRNAs (sgmRNAs). In a coronavirus, an exceptionally long-range interaction, which spans ∼26,000 nucleotides, promotes polymerase repriming during the discontinuous template synthesis step of sgmRNA-N transcription. A challenge for the future will be to determine how these long-range interactions are integrated and regulated in the complex context of viral RNA genomes.
Long-range intragenomic RNA–RNA interactions in the genomes of positive-strand RNA viruses involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, Nicholson and White discuss recent insights into the structure and function of these genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses. Positive-strand RNA viruses are important human, animal and plant pathogens that are defined by their single-stranded positive-sense RNA genomes. In recent years, it has become increasingly evident that interactions that occur between distantly positioned RNA sequences within these genomes can mediate important viral activities. These long-range intragenomic RNA–RNA interactions involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, we discuss recent insights into the structure and function of these intriguing genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
18
|
Romero-López C, Berzal-Herranz A. Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. World J Med Genet 2014; 4:6-18. [DOI: 10.5496/wjmg.v4.i2.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus (HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5’-untranslatable regions (5’UTRs) and 3’UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5’ terminus of the viral genome and regulated by distal functional RNA domains placed at the 3’ end. Subsequent RNA replication strongly depends on the 3’UTR folding and is also influenced by the 5’ end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNA-RNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.
Collapse
|