1
|
Elias KM, Khan SR, Stadler E, Schlub TE, Cromer D, Polizzotto MN, Kent SJ, Turner T, Davenport MP, Khoury DS. Viral clearance as a surrogate of clinical efficacy for COVID-19 therapies in outpatients: a systematic review and meta-analysis. THE LANCET. MICROBE 2024; 5:e459-e467. [PMID: 38583464 DOI: 10.1016/s2666-5247(23)00398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024]
Abstract
BACKGROUND Surrogates of antiviral efficacy are needed for COVID-19. We aimed to investigate the relationship between the virological effect of treatment and clinical efficacy as measured by progression to severe disease in outpatients treated for mild-to-moderate COVID-19. METHODS In this systematic review and meta-analysis, we searched PubMed, Scopus, and medRxiv from database inception to Aug 16, 2023, for randomised placebo-controlled trials that tested virus-directed treatments (ie, any monoclonal antibodies, convalescent plasma, or antivirals) in non-hospitalised individuals with COVID-19. We only included studies that reported both clinical outcomes (ie, rate of disease progression to hospitalisation or death) and virological outcomes (ie, viral load within the first 7 days of treatment). We extracted summary data from eligible reports, with discrepancies resolved through discussion. We used an established meta-regression model with random effects to assess the association between clinical efficacy and virological treatment effect, and calculated I2 to quantify residual study heterogeneity. FINDINGS We identified 1718 unique studies, of which 22 (with a total of 16 684 participants) met the inclusion criteria, and were in primarily unvaccinated individuals. Risk of bias was assessed as low in 19 of 22 studies for clinical outcomes, whereas for virological outcomes, a high risk of bias was assessed in 11 studies, some risk in ten studies, and a low risk in one study. The unadjusted relative risk of disease progression for each extra log10 copies per mL reduction in viral load in treated compared with placebo groups was 0·12 (95% CI 0·04-0·34; p<0·0001) on day 3, 0·20 (0·08-0·50; p=0·0006) on day 5, and 0·53 (0·30-0·94; p=0·030) on day 7. The residual heterogeneity in our meta-regression was estimated as low (I2=0% [0-53] on day 3, 0% [0-71] on day 5, and 0% [0-43] on day 7). INTERPRETATION Despite the aggregation of studies with differing designs, and evidence of risk of bias in some virological outcomes, this review provides evidence that treatment-induced acceleration of viral clearance within the first 5 days after treatment is a potential surrogate of clinical efficacy to prevent hospitalisation with COVID-19. This work supports the use of viral clearance as an early phase clinical trial endpoint of therapeutic efficacy. FUNDING Australian Government Department of Health, Medical Research Future Fund, and Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Karen M Elias
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Shanchita R Khan
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Eva Stadler
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia; Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Mark N Polizzotto
- Clinical Hub for Interventional Research and John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia; Canberra Regional Cancer Centre, The Canberra Hospital, Canberra, ACT, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tari Turner
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Focosi D, Casadevall A. A Critical Analysis of the Use of Cilgavimab plus Tixagevimab Monoclonal Antibody Cocktail (Evusheld™) for COVID-19 Prophylaxis and Treatment. Viruses 2022; 14:1999. [PMID: 36146805 PMCID: PMC9505619 DOI: 10.3390/v14091999] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/15/2023] Open
Abstract
Evusheld® (tixagevimab + cilgavimab; AZD7442) was the first anti-Spike monoclonal antibody (mAb) cocktail designed not only for treatment but also with pre-exposure prophylaxis in mind. The immunoglobulins were engineered for prolonged half-life by modifying the Fc fragment, thus creating a long-acting antibody (LAAB). We review here preclinical development, baseline and treatment-emergent resistance, clinical efficacy from registration trials, and real-world post-marketing evidence. The combination was initially approved for pre-exposure prophylaxis at the time of the SARS-CoV-2 Delta VOC wave based on a trial conducted in unvaccinated subjects when the Alpha VOC was dominant. Another trial also conducted at the time of the Alpha VOC wave proved efficacy as early treatment in unvaccinated patients and led to authorization at the time of the BA.4/5 VOC wave. Tixagevimab was ineffective against any Omicron sublineage, so cilgavimab has so far been the ingredient which has made a difference. Antibody monotherapy has a high risk of selecting for immune escape variants in immunocompromised patients with high viral loads, which nowadays represent the main therapeutic indication for antibody therapies. Among Omicron sublineages, cilgavimab was ineffective against BA.1, recovered efficacy against BA.2 and BA.2.12.1, but lost efficacy again against BA.4/BA.5 and BA.2.75. Our analysis indicated that Evusheld® has been used during the Omicron VOC phase without robust clinical data of efficacy against this variant and suggested that several regulatory decisions regarding its use lacked consistency. There is an urgent need for new randomized controlled trials in vaccinated, immunocompromised subjects, using COVID-19 convalescent plasma as a control arm.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Rivero R, Garay E, Botero Y, Serrano-Coll H, Gastelbondo B, Muñoz M, Ballesteros N, Castañeda S, Patiño LH, Ramirez JD, Calderon A, Guzmán C, Martinez-Bravo C, Aleman A, Arrieta G, Mattar S. Human-to-dog transmission of SARS-CoV-2, Colombia. Sci Rep 2022; 12:7880. [PMID: 35551247 PMCID: PMC9097567 DOI: 10.1038/s41598-022-11847-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, has evolved to have a wide range of hosts, including non-human primates, wild and domestic animals. The ACE2 protein has a high level of conservation and is the common receptor invertebrate species for a viral infection to occur; this receptor could give rise to anthroponotic events. This article describes the first event of symptomatic transmission in Latin America from a human to a dog by the B.1.625 lineage of SARS-CoV-2. We found 21 shared mutations in the complete genomes of viral sequences from owners and dogs. Further phylogenetic and molecular analysis showed that 100% co-localization of the clade helps to understand human-animal transmission. Prediction of the Spike protein structure of the sequenced virus and docking analyzes showed that the E484K mutation in the receptor-binding domain (RBD) could contribute to the viral affinity of dACE2. Therefore, close contact between SARS-CoV-2-infected humans and pets should be avoided to prevent the emergence of novel mutations of public health importance from anthroponotic events.
Collapse
Affiliation(s)
- Ricardo Rivero
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Evelin Garay
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Yesica Botero
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Héctor Serrano-Coll
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Bertha Gastelbondo
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alfonso Calderon
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Camilo Guzmán
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Caty Martinez-Bravo
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Ader Aleman
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Germán Arrieta
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
- Clínica Salud Social, Sincelejo, Sucre, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia.
- Clínica Salud Social, Sincelejo, Sucre, Colombia.
| |
Collapse
|
4
|
Salehi-Vaziri M, Fazlalipour M, Seyed Khorrami SM, Azadmanesh K, Pouriayevali MH, Jalali T, Shoja Z, Maleki A. The ins and outs of SARS-CoV-2 variants of concern (VOCs). Arch Virol 2022; 167:327-344. [PMID: 35089389 PMCID: PMC8795292 DOI: 10.1007/s00705-022-05365-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, a newly emerging coronavirus that caused the COVID-19 epidemic, has been spreading quickly throughout the world. Despite immunization and some fairly effective therapeutic regimens, SARS-CoV-2 has been ravaging patients, health workers, and the economy. SARS-CoV-2 mutates and evolves to adapt to its host as a result of extreme selection pressure. As a consequence, new SARS-CoV-2 variants have emerged, some of which are classified as variants of concern (VOC) because they exhibit greater transmissibility, cause more-severe disease, are better able to escape immunity, or cause higher mortality than the original Wuhan strain. Here, we introduce these VOCs and review their characteristics, such as transmissibility, immune escape, mortality risk, and diagnostics.
Collapse
Affiliation(s)
- Mostafa Salehi-Vaziri
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Fazlalipour
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
| | | | - Kayhan Azadmanesh
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Tahmineh Jalali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran.
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Focosi D, Maggi F, Franchini M, McConnell S, Casadevall A. Analysis of Immune Escape Variants from Antibody-Based Therapeutics against COVID-19: A Systematic Review. Int J Mol Sci 2021; 23:29. [PMID: 35008446 PMCID: PMC8744556 DOI: 10.3390/ijms23010029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022] Open
Abstract
The accelerated SARS-CoV-2 evolution under selective pressure by massive deployment of neutralizing antibody-based therapeutics is a concern with potentially severe implications for public health. We review here reports of documented immune escape after treatment with monoclonal antibodies and COVID-19-convalescent plasma (CCP). While the former is mainly associated with specific single amino acid mutations at residues within the receptor-binding domain (e.g., E484K/Q, Q493R, and S494P), a few cases of immune evasion after CCP were associated with recurrent deletions within the N-terminal domain of the spike protein (e.g., ΔHV69-70, ΔLGVY141-144 and ΔAL243-244). The continuous genomic monitoring of non-responders is needed to better understand immune escape frequencies and the fitness of emerging variants.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
- Laboratory of Microbiology, Azienda Socio Sanitaria Territoriale Sette Laghi, 21100 Varese, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health, Baltimore, MD 21218, USA; (S.M.); (A.C.)
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health, Baltimore, MD 21218, USA; (S.M.); (A.C.)
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|