1
|
Adugna A. Therapeutic strategies and promising vaccine for hepatitis C virus infection. Immun Inflamm Dis 2023; 11:e977. [PMID: 37647422 PMCID: PMC10461427 DOI: 10.1002/iid3.977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatitis C virus (HCV) infection is still a significant global health problem despite therapeutic advancements. Ribavirin and interferon therapy have been the sole available treatments for HCV infection for a number of years with low efficacy. Thus, currently, a number of therapeutic strategies are being used, including nanoparticles (NPs), micro-RNAs such as small interfering RNA (siRNA), RNAi-based gene silencing and antisense oligonucleotide-based microRNA-122, microRNA-155, and short hairpin RNAs (shRNAs), and immunotherapeutic approaches such as anti-programmed cell death 1(PD-1), monoclonal antibodies (mAb or moAb), and monocyte-derived dendritic cells (Mo-DCs). Furthermore, direct-acting antivirals (DAAs) and host-targeting agents (HTA) were also the current therapeutic approaches with great efficacy. In spite of different clinical trials on HCV vaccine developments, nowadays there is no effective HCV vaccine in opposition to virus due to various challenges including genetic diversity, lack of immunocompetent small animal models, shortage of HCV vaccination testing alternatives, lack of an effective tissue culture method for replicating HCV, and inadequate knowledge regarding to immune responses against HCV infection. Nowadays, mRNA vaccine, recombinant viral vector, peptides vaccine, virus-like particles, DNA vaccine, rational designed vaccine, and recombinant polyantigenic T-cell-based vaccine are novel promising candidates for HCV vaccine based on various clinical trials. This review summarizes the different therapeutic approaches and the advancements of vaccine candidates for HCV infection.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Pirozyan MR, Nguyen N, Cameron B, Luciani F, Bull RA, Zekry A, Lloyd AR. Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepatitis C Infection. J Infect Dis 2020; 219:1430-1438. [PMID: 30496498 DOI: 10.1093/infdis/jiy679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hepatitis C virus (HCV) infection, virus-specific CD8+ T cells are recruited to the liver for antiviral activity. Multiple chemokine ligands are induced by the infection, notably interferon-inducible chemokine, CXCL10. In HCV, intrahepatic T cells express chemokine receptors (CCRs), including CXCR3, CXCR6, CCR1, and CCR5, but CCR expression on antigen-specific effector and memory T cells has not been investigated. METHODS Paired blood and liver samples were collected from subjects with chronic HCV for flow cytometric analysis of CCR expression on CD8+ T cells. Expression of these CCRs was then examined on HCV-specific CD8+ T-cell subpopulations in the blood from subjects with acute or chronic HCV. RESULTS Relative to peripheral blood, the liver was enriched with CD8+ T cells expressing CCR2, CCR5, CXCR3, and CXCR6 either singly or in combinations. CXCR3 was preferentially expressed on HCV-specific CD8+ T cells in both acute and chronic phases of infection in blood. Both CXCR3 and CCR2 were overexpressed on HCV-specific CD8+CCR7+CD45RO+ (central memory) cells, whereas effector memory (CD8+CCR7-CD45RO+) cells expressed more CXCR6. CONCLUSIONS CXCR3-mediated signals support the accumulation of HCV-specific CD8+ memory T cells in the infected liver, and emphasize the importance of the CXCL10/CXCR3 trafficking pathway during acute and chronic HCV infection.
Collapse
Affiliation(s)
- Mehdi R Pirozyan
- Viral Immunology Systems Program, The Kirby Institute.,School of Medical Sciences, Faculty of Medicine.,Melanoma Immunology and Oncology, The Centenary Institute, Sydney, Australia
| | - Nam Nguyen
- School of Medical Sciences, Faculty of Medicine
| | | | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute
| | - Amany Zekry
- School of Medical Sciences, Faculty of Medicine.,St George Hospital Clinical School, University of New South Wales
| | | |
Collapse
|
3
|
Barathan M, Mohamed R, Yong YK, Kannan M, Vadivelu J, Saeidi A, Larsson M, Shankar EM. Viral Persistence and Chronicity in Hepatitis C Virus Infection: Role of T-Cell Apoptosis, Senescence and Exhaustion. Cells 2018; 7:cells7100165. [PMID: 30322028 PMCID: PMC6210370 DOI: 10.3390/cells7100165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) represents a challenging global health threat to ~200 million infected individuals. Clinical data suggest that only ~10–15% of acutely HCV-infected individuals will achieve spontaneous viral clearance despite exuberant virus-specific immune responses, which is largely attributed to difficulties in recognizing the pathognomonic symptoms during the initial stages of exposure to the virus. Given the paucity of a suitable small animal model, it is also equally challenging to study the early phases of viral establishment. Further, the host factors contributing to HCV chronicity in a vast majority of acutely HCV-infected individuals largely remain unexplored. The last few years have witnessed a surge in studies showing that HCV adopts myriad mechanisms to disconcert virus-specific immune responses in the host to establish persistence, which includes, but is not limited to viral escape mutations, viral growth at privileged sites, and antagonism. Here we discuss a few hitherto poorly explained mechanisms employed by HCV that are believed to lead to chronicity in infected individuals. A better understanding of these mechanisms would aid the design of improved therapeutic targets against viral establishment in susceptible individuals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Rosmawati Mohamed
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 LembahPantai, Kuala Lumpur, Malaysia.
| | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, 43900 Sepang, Malaysia.
| | - Meganathan Kannan
- Division of Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linkoping University, 58 183 Linkoping, Sweden.
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| |
Collapse
|
4
|
Leone P, Di Tacchio M, Berardi S, Santantonio T, Fasano M, Ferrone S, Vacca A, Dammacco F, Racanelli V. Dendritic cell maturation in HCV infection: altered regulation of MHC class I antigen processing-presenting machinery. J Hepatol 2014; 61:242-51. [PMID: 24732300 PMCID: PMC8759579 DOI: 10.1016/j.jhep.2014.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/04/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Modulation of dendritic cell (DC) function has been theorized as one of the mechanisms used by hepatitis C virus (HCV) to evade the host immune response and cause persistent infection. METHODS We used a range of cell and molecular biology techniques to study DC subsets from uninfected and HCV-infected individuals. RESULTS We found that patients with persistent HCV infection have lower numbers of circulating myeloid DC and plasmacytoid DC than healthy controls or patients who spontaneously recovered from HCV infection. Nonetheless, DC from patients with persistent HCV infection display normal phagocytic activity, typical expression of the class I and II HLA and co-stimulatory molecules, and conventional cytokine production when stimulated to mature in vitro. In contrast, they do not display the strong switch from immunoproteasome to standard proteasome subunit expression and the upregulation of the transporter-associated proteins following stimulation, which were instead observed in DC from uninfected individuals. This different modulation of components of the HLA class I antigen processing-presenting machinery results in a differential ability to present a CD8(+) T cell epitope whose generation is dependent on the LMP7 immunoproteasome subunit. CONCLUSIONS Overall, these findings establish that under conditions of persistent HCV antigenemia, HLA class I antigen processing and presentation are distinctively regulated during DC maturation.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Mariangela Di Tacchio
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Simona Berardi
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Massimo Fasano
- Department of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelo Vacca
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Franco Dammacco
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
5
|
Postnatal Development of Lung T Lymphocytes in a Porcine Model. Lung 2014; 192:793-802. [DOI: 10.1007/s00408-014-9622-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023]
|
6
|
Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc Natl Acad Sci U S A 2013; 110:15001-6. [PMID: 23980172 DOI: 10.1073/pnas.1312772110] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) persistence is facilitated by exhaustion of CD8+ T cells that express the inhibitory receptor programmed cell death 1 (PD-1). Blockade of PD-1 signaling improves in vitro proliferation of HCV-specific T lymphocytes, but whether antiviral function can be restored in infected individuals is unknown. To address this question, chimpanzees with persistent HCV infection were treated with anti-PD-1 antibodies. A significant reduction in HCV viremia was observed in one of three treated animals without apparent hepatocellular injury. Viremia rebounded in the responder animal when antibody treatment was discontinued. Control of HCV replication was associated with restoration of intrahepatic CD4+ and CD8+ T-cell immunity against multiple HCV proteins. The responder animal had a history of broader T-cell immunity to multiple HCV proteins than the two chimpanzees that did not respond to PD-1 therapy. The results suggest that successful PD-1 blockade likely requires a critical threshold of preexisting virus-specific T cells in liver and warrants consideration of therapeutic vaccination strategies in combination with PD-1 blockade to broaden narrow responses. Anti-PD-1 immunotherapy may also facilitate control of other persistent viruses, notably the hepatitis B virus where options for long-term control of virus replication are limited.
Collapse
|
7
|
Griffiths P. Wish list for viral vaccinologists. Rev Med Virol 2012; 22:281-4. [PMID: 22836674 DOI: 10.1002/rmv.1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Dominguez-Villar M, Fernandez-Ponce C, Munoz-Suano A, Gomez E, Rodríguez-Iglesias M, Garcia-Cozar F. Up-regulation of FOXP3 and induction of suppressive function in CD4+ Jurkat T-cells expressing hepatitis C virus core protein. Clin Sci (Lond) 2012; 123:15-27. [PMID: 22214248 DOI: 10.1042/cs20110631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
HCV (hepatitis C virus) infection is a serious health care problem that affects more than 170 million people worldwide. Viral clearance depends on the development of a successful cellular immune response against the virus. Interestingly, such a response is altered in chronically infected patients, leading to chronic hepatitis that can result in liver fibrosis, cirrhosis and hepatocellular carcinoma. Among the mechanisms that have been described as being responsible for the immune suppression caused by the virus, Treg-cells (regulatory T-cells) are emerging as an essential component. In the present work we aim to study the effect of HCV-core protein in the development of T-cells with regulatory-like function. Using a third-generation lentiviral system to express HCV-core in CD4+ Jurkat T-cells, we describe that HCV-core-expressing Jurkat cells show an up-regulation of FOXP3 (forkhead box P3) and CTLA-4 (cytotoxic T-lymphocyte antigen-4). Moreover, we show that HCV-core-transduced Jurkat cells are able to suppress CD4+ and CD8+ T-cell responses to anti-CD3 plus anti-CD28 stimulation.
Collapse
Affiliation(s)
- Margarita Dominguez-Villar
- Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology (Immunology), University of Cadiz, Cadiz, Spain
| | | | | | | | | | | |
Collapse
|