1
|
Gandolfi MG, Taddei P, Zamparini F, Ottolenghi L, Polimeni A, Prati C. Dentine surface modification and remineralization induced by bioactive toothpastes. Int J Dent Hyg 2024; 22:554-574. [PMID: 37424392 DOI: 10.1111/idh.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE In this study, dentine surface was analysed through Environmental-scanning-electron-microscopy (ESEM) with energy-dispersive-X-ray-spectrometry (EDX) and Fourier-transform-infrared-spectroscopy (FTIR) with attenuated total-reflectance (ATR) to assess the morpho-chemical changes and variations in mineralization degree after demineralizing treatment, after five toothpastes application (HA & Citrate toothpaste, Zinc-HA toothpaste, Calcium Sodium Phosphosilicate toothpaste, Arginine & Calcium carbonate toothpaste, Colgate-Triple-Action, and Control toothpaste), after soaking in artificial saliva and after citric acid attack. METHODS Ca/P, Ca/N and P/N ratios were calculated from EDX atomic data to evaluate the mineralization degree of dentine surface. The IR calcium phosphate (CaP)/collagen and carbonate/collagen ratios has been evaluated to assess the remineralization changes in dentine; the carbonate/collagen IR ratio was calculated to identify the nucleation of B-type-carbonated apatite and calcium carbonate. RESULTS ESEM-EDX and ATR-FTIR showed residuals of toothpastes after the treatments in all cases, with a general increase in the mineralization degree after soaking in artificial saliva and a decrease after acid attack. Treatment with Arginine & Calcium carbonate toothpaste showed the highest Ca/P value after treatment (Ca/P 1.62) and acid attack (Ca/P 1.5) in confirmation, IR showed the highest amount of carbonate after treatment and soaking in artificial saliva. Arginine and calcium carbonate toothpaste and HA and citrate toothpaste remained to a higher extent on the dentine surface and revealed a higher remineralization activity. These formulations showed higher resistance to demineralization attack, as demonstrated by a higher ICaP/IAmide II intensity ratio than those obtained after EDTA treatment. CONCLUSIONS Toothpastes that remained to a higher extent on dentine surface (arginine and calcium carbonate toothpaste in particular) were more able to promote remineralization. The formed calcium phosphate (CaPs) phase was intimately bound to dentine rather than a simple deposit.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fausto Zamparini
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Livia Ottolenghi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Alhamdan MM, Knowles JC, McDonald AV. In Vitro Evaluation of Remineralization Potential of Five Toothpastes on Soft Drink-Eroded Human Enamel and Dentine. Cureus 2024; 16:e62921. [PMID: 38912082 PMCID: PMC11193552 DOI: 10.7759/cureus.62921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 06/25/2024] Open
Abstract
OBJECTIVE The purpose of this in vitro study was to evaluate the potential remineralization of enamel and dentine erosion lesions after the application of five different toothpastes. METHODOLOGY A total of 104 enamel and dentine samples were prepared from maxillary third molars. Each group was divided according to the toothpaste application mode (topical = 56; brushing = 48) and the toothpaste used seven topical groups and six brushing groups (n = 8). The groups included negative control (NC), positive control (PC), Sensodyne Pronamel (SP), Regenerate (R), Regenerate with boosting serum (R+), Colgate Duraphat 5000 (CD), and tooth mousse (TM). RESULTS The statistical analysis showed significant surface microhardness (SMH) change. All enamel groups showed a significant decrease in SMH compared to NC for both application modes. However, no significance was recorded between test groups. Similar results were observed between dentine groups and their relevant controls for both application modes, except brushed R and R+ groups, which were insignificant to their NC. For topical groups, TM showed a significant increase in SMH. While R and R+ showed lower loss than SP and CD. CONCLUSIONS All tested agents offered a degree of remineralization in both enamel and dentine with no significant difference between agents in enamel groups while R, R+, and TM offered better results in dentine groups. CLINICAL SIGNIFICANCE For dentine groups, similar findings were observed with superior tooth surface protection with the application of TM over other agents. Tooth surface remineralization was achieved when agents were either applied topically or brushed over the surface.
Collapse
Affiliation(s)
- Mai M Alhamdan
- Department of Prosthetic Dental Sciences, King Saud University, Riyadh, SAU
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, University College London, London, GBR
| | - Ailbhe V McDonald
- Department of Restorative Dentistry, University College London, London, GBR
| |
Collapse
|
3
|
Dobrota CT, Florea AD, Racz CP, Tomoaia G, Soritau O, Avram A, Benea HRC, Rosoiu CL, Mocanu A, Riga S, Kun AZ, Tomoaia-Cotisel M. Dynamics of Dental Enamel Surface Remineralization under the Action of Toothpastes with Substituted Hydroxyapatite and Birch Extract. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2038. [PMID: 38730845 PMCID: PMC11084803 DOI: 10.3390/ma17092038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
To address tooth enamel demineralization resulting from factors such as acid erosion, abrasion, and chronic illness treatments, it is important to develop effective daily dental care products promoting enamel preservation and surface remineralization. This study focused on formulating four toothpastes, each containing calcined synthetic hydroxyapatite (HAP) in distinct compositions, each at 4%, along with 1.3% birch extract. Substitution elements were introduced within the HAP structure to enhance enamel remineralization. The efficacy of each toothpaste formulation was evaluated for repairing enamel and for establishing the dynamic of the remineralization. This was performed by using an in vitro assessment of artificially demineralized enamel slices. The structural HAP features explored by XRD and enamel surface quality by AFM revealed notable restorative properties of these toothpastes. Topographic images and the self-assembly of HAP nanoparticles into thin films on enamel surfaces showcased the formulations' effectiveness. Surface roughness was evaluated through statistical analysis using one-way ANOVA followed by post-test Bonferroni's multiple comparison test with a p value < 0.05 significance setting. Remarkably, enamel nanostructure normalization was observed within a short 10-day period of toothpaste treatment. Optimal remineralization for all toothpastes was reached after about 30 days of treatment. These toothpastes containing birch extract also have a dual function of mineralizing enamel while simultaneously promoting enamel health and restoration.
Collapse
Affiliation(s)
- Cristina Teodora Dobrota
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Alexandra-Diana Florea
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
| | - Csaba-Pal Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 General Traian Mosoiu St., 400132 Cluj-Napoca, Romania; (G.T.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Olga Soritau
- Oncology Institute of Cluj-Napoca, 34-36 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Alexandra Avram
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
| | - Horea-Rares-Ciprian Benea
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 General Traian Mosoiu St., 400132 Cluj-Napoca, Romania; (G.T.)
| | - Cristina Lavinia Rosoiu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
| | - Sorin Riga
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Attila-Zsolt Kun
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos St., 400028 Cluj-Napoca, Romania; (C.T.D.); (A.-D.F.); (C.-P.R.); (A.A.); (A.M.); (S.R.); (A.-Z.K.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| |
Collapse
|
4
|
Bologa E, Stoleriu S, Nica I, Tărăboanță I, Georgescu A, Matei RI, Andrian S. The Effect of Three Desensitizing Toothpastes on Dentinal Tubules Occlusion and on Dentin Hardness. Biomedicines 2023; 11:2464. [PMID: 37760904 PMCID: PMC10525594 DOI: 10.3390/biomedicines11092464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
There are two main methods used for dentin hypersensitivity (DH) treatment: dentinal tubule occlusion and blockage of nerve activity. Dentifrices are the most common vehicles for active ingredients used for DH treatment. The aim of this study was to evaluate the efficacy of three toothpastes on dentinal tubule occlusion, mineral acquisition, and dentin hardness. Forty human dentin disks were submerged in 40% citric acid for 30 s and then exposed to tooth brushing for 2 min twice a day for 14 days using three toothpastes: Dontodent Sensitive (group 1), Dr. Wolff's Biorepair (group 2), and Sensodyne Repair and Protect (group 3). In the control group (group 4), the samples were brushed with water. All of the samples were evaluated using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and Vickers dentin hardness determination. On SEM images, the degree of dentinal tubule occlusion was assessed using a five-grade scale. The mean score values in groups 1-4 were 3.60 ± 0.69, 2.20 ± 0.91, 2.30 ± 1.16, and 5.00 ± 0.00, significantly higher in study groups when compared to the control group (Kruskal Wallis test p < 0.05). EDX evaluation showed significantly higher calcium and phosphorus concentrations in groups 1 and 3 when compared to control group d. The mean values of Vickers dentin hardness numbers in groups 1-4 were 243.03 ± 10.014, 327.38 ± 56.65, 260.29 ± 37.69, and 225.83 ± 29.93, respectively. No statistically significant results were obtained when comparing the hardness mean values in groups (Kruskal-Wallis statistical test, p = 0.372 > 0.05). All three toothpastes tested demonstrated significant occlusion of dentinal tubules. Dontodent Sensitive and Sensodyne Repair and Protect toothpastes enhanced the calcium and phosphorus content of the dentin surface. None of the toothpastes increased dentin hardness as a result of mineral acquisition.
Collapse
Affiliation(s)
- Emilia Bologa
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iași, Romania; (E.B.); (I.N.); (I.T.); (A.G.); (S.A.)
| | - Simona Stoleriu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iași, Romania; (E.B.); (I.N.); (I.T.); (A.G.); (S.A.)
| | - Irina Nica
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iași, Romania; (E.B.); (I.N.); (I.T.); (A.G.); (S.A.)
| | - Ionuț Tărăboanță
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iași, Romania; (E.B.); (I.N.); (I.T.); (A.G.); (S.A.)
| | - Andrei Georgescu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iași, Romania; (E.B.); (I.N.); (I.T.); (A.G.); (S.A.)
| | - Ruxandra Ilinca Matei
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Sq., 410068 Oradea, Romania
| | - Sorin Andrian
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iași, Romania; (E.B.); (I.N.); (I.T.); (A.G.); (S.A.)
| |
Collapse
|
5
|
Butera A, Maiorani C, Gallo S, Pascadopoli M, Quintini M, Lelli M, Tarterini F, Foltran I, Scribante A. Biomimetic Action of Zinc Hydroxyapatite on Remineralization of Enamel and Dentin: A Review. Biomimetics (Basel) 2023; 8:biomimetics8010071. [PMID: 36810402 PMCID: PMC9944842 DOI: 10.3390/biomimetics8010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Biomimetic zinc-carbonate hydroxyapatite technology was developed to realize materials that mimic the natural hydroxyapatite of enamel and dentin and possess good activity in terms of affinity to adhere to these biological tissues. The chemical and physical characteristics of this active ingredient allows the hydroxyapatite itself to be particularly similar to dental hydroxyapatite, enhancing the bond between biomimetic hydroxyapatite and dental hydroxyapatite. The aim of this review is to assess the efficacy of this technology in terms of benefits for enamel and dentin and reduction of dental hypersensitivity. MATERIALS AND METHODS A literature search (Pubmed/MEDLINE and Scopus) of articles from 2003 to 2023 was conducted to analyze studies focused on the use of zinc-hydroxyapatite products. Duplicates were eliminated from the 5065 articles found, leaving 2076 articles. Of these, 30 articles were analyzed based on the use of products with zinc-carbonate hydroxyapatite in these studies. RESULTS 30 articles were included. Most of the studies showed benefits in terms of remineralization and prevention of enamel demineralization in terms of occlusion of the dentinal tubules and reduction of dentinal hypersensitivity. CONCLUSION Oral care products such as toothpaste and mouthwash with biomimetic zinc-carbonate hydroxyapatite were shown to provide benefits according to the aims of this review.
Collapse
Affiliation(s)
- Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.B.); (C.M.)
| | - Carolina Maiorani
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.B.); (C.M.)
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Martina Quintini
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Lelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40126 Bologna, Italy
| | - Fabrizio Tarterini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40126 Bologna, Italy
| | - Ismaela Foltran
- Incos-Cosmeceutica Industriale, Funo di Argelato, 40050 Bologna, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Effects of Dentifrices Containing Nanohydroxyapatite on Dentinal Tubule Occlusion—A Scanning Electron Microscopy and EDX Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This in vitro study evaluated the effects of dentifrices containing nano-hydroxyapatite (n-HAp) on dentinal tubule occlusion and on mineral deposition. Dentin specimens of ten human teeth were submersed for 30 s in 40% citric acid and then randomly divided into four groups (three study groups and one control group). In the study groups, the dentin samples were exposed to three different n-HAp toothpastes: Karex (Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany), Biorepair Plus Sensitive (Coswell SpA, Bologna, Italy), and Dr. Wolff’s Biorepair (Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany); in the control group no toothpaste was applied. All of the samples were evaluated using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. In the control group all of the samples showed a frank and wide opening of the dentinal tubules, whereas in the study groups different degrees of tubule closure by mineral depositions were observed. Toothpastes containing n-HAp determined a significant occlusion of dentinal tubules and a significant increase of mineral deposition on the dentin surface. All three tested toothpastes showed similar results regarding the degree of dentinal tubule closure. Varying degrees of differences in calcium, phosphate, carbon, and oxygen ion concentrations among the three tested toothpastes were obtained.
Collapse
|
7
|
Gargouri W, Kammoun R, Elleuche M, Tlili M, Kechaou N, Ghoul-Mazgar S. Effect of xylitol chewing gum enriched with propolis on dentin remineralization in vitro. Arch Oral Biol 2020; 112:104684. [DOI: 10.1016/j.archoralbio.2020.104684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
|
8
|
Nobre CMG, Pütz N, Hannig M. Adhesion of Hydroxyapatite Nanoparticles to Dental Materials under Oral Conditions. SCANNING 2020; 2020:6065739. [PMID: 32454927 PMCID: PMC7222588 DOI: 10.1155/2020/6065739] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 05/21/2023]
Abstract
Hydroxyapatite nanoparticles (nano-HAP) are receiving considerable attention for dental applications, and their adhesion to enamel is well established. However, there are no reports concerning the effects of HAP on other dental materials, and most of the studies in this field are based on in vitro designs, neglecting the salivary pellicle-apatite interactions. Thus, this in situ pilot study aims to evaluate the effects of three hydroxyapatite-based solutions and their interactions with different dental material surfaces under oral conditions. Hence, two volunteers carried intraoral splints with mounted samples from enamel and from three dental materials: titanium, ceramics, and polymethyl-methacrylate (PMMA). Three HAP watery solutions (5%) were prepared with different shapes and sizes of nano-HAP (HAP I, HAP II, HAP III). After 3 min of pellicle formation, 10 ml rinse was performed during 30 sec. Rinsing with water served as control. Samples were accessed immediately after rinsing, 30 min and 2 h after rinsing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the particles, and SEM evaluated the pellicle-HAP interactions. SEM and TEM results showed a high variation in the size range of the particles applied. A heterogeneous HAP layer was present after 2 h on enamel, titanium, ceramics, and PMMA surfaces under oral conditions. Bridge-like structures were visible between the nano-HAP and the pellicle formed on enamel, titanium, and PMMA surfaces. In conclusion, nano-HAP can adhere not only to enamel but also to artificial dental surfaces under oral conditions. The experiment showed that the acquired pellicle act as a bridge between the nano-HAP and the materials' surface.
Collapse
Affiliation(s)
- Cíntia Mirela Guimarães Nobre
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| | - Norbert Pütz
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| |
Collapse
|
9
|
Enax J, Fabritius HO, Fabritius-Vilpoux K, Amaechi BT, Meyer F. Modes of Action and Clinical Efficacy of Particulate Hydroxyapatite in Preventive Oral Health Care − State of the Art. Open Dent J 2019. [DOI: 10.2174/1874210601913010274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background:Particulate Hydroxyapatite (HAP; Ca5(PO4)3(OH)) is being increasingly used as multifunctional active ingredient in oral care. Due to its high similarity to human enamel crystallites, it is considered as a biomimetic agent.Objective:The aim of this narrative review is to identify the modes of action of HAP in preventive oral health care based on published studies. The outcomes are expected to improve the understanding of the effects of HAP in the oral cavity and to provide a knowledge base for future research in the field of biomimetic oral care.Methods:The data analyzed and discussed are primarily based on selected published scientific studies and reviews fromin vivo,in situ, andin vitrostudies on HAP in the field of preventive oral health care. The databases Cochrane Library, EBSCO, PubMed and SciFinder were used for literature search.Results:We identified different modes of action of HAP in the oral cavity. They are mainly based on (I) Physical principles (e.g. attachment of HAP-particles to the tooth surface and cleaning properties), (II) Bio-chemical principles (e.g. source of calcium and phosphate ions under acidic conditions and formation of an interface between HAP-particles and the enamel), and (III) Biological principles (e.g. HAP-particles interacting with microorganisms).Conclusion:Although more mechanistic studies are needed, published data show that HAP has multiple modes of action in the oral cavity. Since the effects address a wide range of oral health problems, HAP is a biomimetic agent with a broad range of applications in preventive oral health care.
Collapse
|
10
|
Moghaddam ET, Tafazoli A. Cola Beverages: Clinical Uses versus Adverse Effects. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666170821130225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Excessive consumption of cola beverages is accompanied by numerous public health risks. But besides these well-known adverse effects, recently, several medical articles have been published that show some indications for cola beverages in clinical practice like resolution of gastrointestinal or feeding tube obstructions, increasing bioavailability and palatability of other medications, rehydration and other uses in healthcare settings. These approaches are not without shortcomings and complications.Methods:In this systematic review we tried to explore these new uses for practitioners and also reemphasize on the most evidence-based complications of cola consumption like bone loss and metabolic and cardiovascular adverse effects in cases of misuse and overuse from both clinical and nutritional points of view via searching the PubMed database.Results:We chose 145 journal articles from the most relevant ones plus 30 extra references and categorized their topics in two classes of medical uses and adverse effects.Conclusion:It could be stated that cola beverages have demonstrated interesting uses and benefits in medicine but their use should be regulated as strict as possible.
Collapse
Affiliation(s)
- Ehsan T. Moghaddam
- Orthodontics Department, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Tafazoli
- School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Influence of Er,Cr:YSGG laser, associated or not to desensitizing agents, in the prevention of acid erosion in bovine root dentin. Lasers Med Sci 2018; 34:893-900. [PMID: 30374705 DOI: 10.1007/s10103-018-2669-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
This in vitro study evaluated the influence of the Er,Cr:YSGG laser, associated or not to desensitizing agents, in the prevention of acid erosion in bovine root dentin. Eighty dentin specimens were selected and divided into eight groups (n = 10): G1: negative control; G2: positive control (5% fluoride varnish-FV); G3: Er,Cr:YSGG laser; G4: FV + laser; G5: 3% potassium oxalate; G6: 3% potassium oxalate + laser; G7: biphasic calcium silicate/phosphate gel (gel); G8: gel + laser. Laser parameters: 0.5 W, 6.25 J/cm2 at 1-mm distance. The erosive drink used was a cola soft-drink (pH = 2.42 at 4 °C), lasting 5 min, twice a day, with 6-h intervals between the challenges, during 14 days. Kolmogorov-Smirnov and Levene's tests were satisfied. The surface roughness data were submitted to ANOVA and Tukey post hoc tests. For the wear profile, Kruskal-Wallis and Dunn post hoc tests were used. Afterwards, the Spearman correlation test was performed. All statistical tests assumed a significance level of 5% (α = 0.05). G1 presented the highest surface roughness value after the erosive challenge (3.586 μm2 ± 0.205 μm2) and the G7 presented the lowest surface roughness value after the erosive challenge (1.071 μm2 ± 0.180 μm2). For the lost volume, G4 presented the lowest percentage (9.7% ± 0.9%), while G1 had the highest percentage (41.8% ± 2.5%), both with p < 0.05. There was a weak correlation between the response variables (ρ = 0.33). All groups presented lower values of surface roughness and loss of volume when compared to the negative control group. For the surface roughness, the biphasic calcium silicate/phosphate gel presented the best result. For volume loss, the 5% fluoride varnish + Er,Cr:YSGG laser showed the best results compared to the other groups.
Collapse
|
12
|
Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch Oral Biol 2017; 80:18-26. [DOI: 10.1016/j.archoralbio.2017.03.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/15/2017] [Accepted: 03/17/2017] [Indexed: 12/30/2022]
|
13
|
Lechner BD, Röper S, Messerschmidt J, Blume A, Magerle R. Monitoring Demineralization and Subsequent Remineralization of Human Teeth at the Dentin-Enamel Junction with Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18937-18943. [PMID: 26266571 DOI: 10.1021/acsami.5b04790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using atomic force microscopy, we monitored the nanoscale surface morphology of human teeth at the dentin-enamel junction after performing successive demineralization steps with an acidic soft drink. Subsequently, we studied the remineralization process with a paste containing calcium and phosphate ions. Repeated atomic force microscopy imaging of the same sample areas on the sample allowed us to draw detailed conclusions regarding the specific mechanism of the demineralization process and the subsequent remineralization process. The about 1-μm-deep grooves that are caused by the demineralization process were preferentially filled with deposited nanoparticles, leading to smoother enamel and dentine surfaces after 90 min exposure to the remineralizing agent. The deposited material is found to homogeneously cover the enamel and dentine surfaces in the same manner. The temporal evolution of the surface roughness indicates that the remineralization caused by the repair paste proceeds in two distinct successive phases.
Collapse
Affiliation(s)
- Bob-Dan Lechner
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Stephanie Röper
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz , Reichenhainer Str. 70, 09107 Chemnitz, Germany
| | - Jens Messerschmidt
- Labor für Strukturanalyse Messerschmidt , Hallesche Str. 10, 06246 Bad Lauchstädt, Germany
| | - Alfred Blume
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz , Reichenhainer Str. 70, 09107 Chemnitz, Germany
| |
Collapse
|
14
|
Liaqat S, Aljabo A, Khan MA, Ben Nuba H, Bozec L, Ashley P, Young A. Characterization of Dentine to Assess Bond Strength of Dental Composites. MATERIALS 2015. [PMCID: PMC5455577 DOI: 10.3390/ma8052110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saad Liaqat
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK; E-Mails: (S.L.); (A.A.); (M.A.K.); (H.B.N.); (L.B.)
| | - Anas Aljabo
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK; E-Mails: (S.L.); (A.A.); (M.A.K.); (H.B.N.); (L.B.)
| | - Muhammad Adnan Khan
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK; E-Mails: (S.L.); (A.A.); (M.A.K.); (H.B.N.); (L.B.)
| | - Hesham Ben Nuba
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK; E-Mails: (S.L.); (A.A.); (M.A.K.); (H.B.N.); (L.B.)
| | - Laurent Bozec
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK; E-Mails: (S.L.); (A.A.); (M.A.K.); (H.B.N.); (L.B.)
| | - Paul Ashley
- Department of Paediatric Dentistry, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK; E-Mail:
| | - Anne Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK; E-Mails: (S.L.); (A.A.); (M.A.K.); (H.B.N.); (L.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-20-3456-2353
| |
Collapse
|