Flori A, Giovannetti G, Santarelli MF, Aquaro GD, De Marchi D, Burchielli S, Frijia F, Positano V, Landini L, Menichetti L. Biomolecular imaging of
13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018;
199:153-160. [PMID:
29597071 DOI:
10.1016/j.saa.2018.03.014]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/19/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Magnetic Resonance Spectroscopy of hyperpolarized isotopically enriched molecules facilitates the non-invasive real-time investigation of in vivo tissue metabolism in the time-frame of a few minutes; this opens up a new avenue in the development of biomolecular probes. Dissolution Dynamic Nuclear Polarization is a hyperpolarization technique yielding a more than four orders of magnitude increase in the 13C polarization for in vivo Magnetic Resonance Spectroscopy studies. As reported in several studies, the dissolution Dynamic Nuclear Polarization polarization performance relies on the chemico-physical properties of the sample. In this study, we describe and quantify the effects of the different sample components on the dissolution Dynamic Nuclear Polarization performance of [1-13C]butyrate. In particular, we focus on the polarization enhancement provided by the incremental addition of the glassy agent dimethyl sulfoxide and gadolinium chelate to the formulation. Finally, preliminary results obtained after injection in healthy rats are also reported, showing the feasibility of an in vivo Magnetic Resonance Spectroscopy study with hyperpolarized [1-13C]butyrate using a 3T clinical set-up.
Collapse