1
|
QingNing S, Mohd Ismail ZI, Ab Patar MNA, Mat Lazim N, Hadie SNH, Mohd Noor NF. The limelight of adipose-derived stem cells in the landscape of neural tissue engineering for peripheral nerve injury. Tissue Cell 2024; 91:102556. [PMID: 39293138 DOI: 10.1016/j.tice.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Challenges in treating peripheral nerve injury include prolonged repair time and insufficient functional recovery. Stem cell therapy coupled with neural tissue engineering has been shown to induce nerve regeneration following peripheral nerve injury. Among these stem cells, adipose-derived stem cells (ADSCs) are preferred due to their accessibility, expansion, multidirectional differentiation, and production of essential nutrient factors for nerve growth. In recent years, ADSC-laden nerve guide conduit has been utilized to enhance the therapeutic effects of tissue-engineered nerve grafts. This review explores existing research that recognizes the roles played by ADSCs in inducing peripheral nerve regeneration following injury and summarizes the different methods of application of ADSC-laden nerve conduit in neural tissue engineering.
Collapse
Affiliation(s)
- Sun QingNing
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Department of Rehabilitation, School of Special Education, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Mohd Nor Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia.
| |
Collapse
|
2
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
3
|
Li X, Zhang X, Hao M, Wang D, Jiang Z, Sun L, Gao Y, Jin Y, Lei P, Zhuo Y. The application of collagen in the repair of peripheral nerve defect. Front Bioeng Biotechnol 2022; 10:973301. [PMID: 36213073 PMCID: PMC9542778 DOI: 10.3389/fbioe.2022.973301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Collagen is a natural polymer expressed in the extracellular matrix of the peripheral nervous system. It has become increasingly crucial in peripheral nerve reconstruction as it was involved in regulating Schwann cell behaviors, maintaining peripheral nerve functions during peripheral nerve development, and being strongly upregulated after nerve injury to promote peripheral nerve regeneration. Moreover, its biological properties, such as low immunogenicity, excellent biocompatibility, and biodegradability make it a suitable biomaterial for peripheral nerve repair. Collagen provides a suitable microenvironment to support Schwann cells’ growth, proliferation, and migration, thereby improving the regeneration and functional recovery of peripheral nerves. This review aims to summarize the characteristics of collagen as a biomaterial, analyze its role in peripheral nerve regeneration, and provide a detailed overview of the recent advances concerning the optimization of collagen nerve conduits in terms of physical properties and structure, as well as the application of the combination with the bioactive component in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Hao
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| | - Yue Zhuo
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| |
Collapse
|
4
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Prada J, Pires I, Ronchi G, Raimondo S, Luís AL, Geuna S, Varejão ASP, Maurício AC. Effects of Olfactory Mucosa Stem/Stromal Cell and Olfactory Ensheating Cells Secretome on Peripheral Nerve Regeneration. Biomolecules 2022; 12:biom12060818. [PMID: 35740943 PMCID: PMC9220795 DOI: 10.3390/biom12060818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Cell secretome has been explored as a cell-free technique with high scientific and medical interest for Regenerative Medicine. In this work, the secretome produced and collected from Olfactory Mucosa Mesenchymal Stem Cells and Olfactory Ensheating Cells was analyzed and therapeutically applied to promote peripheral nerve regeneration. The analysis of the conditioned medium revealed the production and secretion of several factors with immunomodulatory functions, capable of intervening beneficially in the phases of nerve regeneration. Subsequently, the conditioned medium was applied to sciatic nerves of rats after neurotmesis, using Reaxon® as tube-guides. Over 20 weeks, the animals were subjected to periodic functional assessments, and after this period, the sciatic nerves and cranial tibial muscles were evaluated stereologically and histomorphometrically, respectively. The results obtained allowed to confirm the beneficial effects resulting from the application of this therapeutic combination. The administration of conditioned medium from Olfactory Mucosal Mesenchymal Stem Cells led to the best results in motor performance, sensory recovery, and gait patterns. Stereological and histomorphometric evaluation also revealed the ability of this therapeutic combination to promote nervous and muscular histologic reorganization during the regenerative process. The therapeutic combination discussed in this work shows promising results and should be further explored to clarify irregularities found in the outcomes and to allow establishing the use of cell secretome as a new therapeutic field applied in the treatment of peripheral nerves after injury.
Collapse
Affiliation(s)
- Rui D. Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Mariana V. Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Isabel Pires
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Ana L. Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Correspondence: ; Tel.: +351-91-9071286 or +351-22-0428000
| |
Collapse
|
5
|
Melrose J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int J Mol Sci 2022; 23:5148. [PMID: 35563536 PMCID: PMC9103880 DOI: 10.3390/ijms23095148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to illustrate recent developments in neural repair utilizing hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair. Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation and differentiation to a pluripotent migratory progenitor cell type that can participate in repair processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor niche environment aids in these processes. Therapeutic procedures have been developed using olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now that recombinant perlecan domain I and domain V are available, strategies may also be expected in the near future using these to further promote neural repair strategies.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
6
|
Hibbitts AJ, Kočí Z, Kneafsey S, Matsiko A, Žilić L, Dervan A, Hinton P, Chen G, Cavanagh B, Dowling J, McCoy C, Buckley CT, Archibald SJ, O'Brien FJ. Multi-Factorial Nerve Guidance Conduit Engineering Improves Outcomes in Inflammation, Angiogenesis and Large Defect Nerve Repair. Matrix Biol 2022; 106:34-57. [PMID: 35032612 DOI: 10.1016/j.matbio.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 11/13/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Nerve guidance conduits (NGCs) are sub-optimal for long-distance injuries with inflammation and poor vascularization related to poor axonal repair. This study used a multi-factorial approach to create an optimized biomaterial NGC to address each of these issues. Through stepwise optimization, a collagen-chondroitin-6-sulphate (Coll-CS) biomaterial was functionalized with extracellular matrix (ECM) components; fibronectin, laminin 1 and laminin 2 (FibL1L2) in specific ratios. A snap-cooled freeze-drying process was then developed with optimal pore architecture and alignment to guide axonal bridging. Culture of adult rat dorsal root ganglia on NGCs demonstrated significant improvements in inflammation, neurogenesis and angiogenesis in the specific Fib:L1:L2 ratio of 1:4:1. In clinically relevant, large 15 mm rat sciatic nerve defects, FibL1L2-NGCs demonstrated significant improvements in axonal density and angiogenesis compared to unmodified NGCs with functional equivalence to autografts. Therefore, a multiparameter ECM-driven strategy can significantly improve axonal repair across large defects, without exogenous cells or growth factors.
Collapse
Affiliation(s)
- Alan J Hibbitts
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Zuzana Kočí
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Simone Kneafsey
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Leyla Žilić
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Paige Hinton
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), RCSI, Dublin, Ireland
| | | | - Jennifer Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Claire McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Conor T Buckley
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | | | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
7
|
Analysis of Influencing Factors of Repair Effect after Peripheral Nerve Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8294267. [PMID: 34858520 PMCID: PMC8632468 DOI: 10.1155/2021/8294267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
In order to improve the repair effect after peripheral nerve injury, this paper analyzes the related influencing factors. The regeneration of peripheral nerve includes two continuous and overlapping processes: the acute wound healing period and the axon seeking target tissue period. The complete and effective process of peripheral nerve regeneration includes the sprouting, growth and extension of regenerated axons, and the reconstruction of synaptic connections (neuromuscular junctions) with target organs to realize the reinnervation of nerves and restore function. This process includes three indicators of success in regeneration: structural reconstruction, metabolic regeneration, and functional recovery. In order to improve the repair effect of peripheral nerve injury, relevant influencing factors can be analyzed, and effective improvement of these influencing factors can improve the recovery effect of peripheral nerve injury. Finally, this paper analyzes multiple factors to provide theoretical references for follow-up clinical diagnosis and treatment.
Collapse
|
8
|
Peripheral Nerve Regeneration Using Different Germ Layer-Derived Adult Stem Cells in the Past Decade. Behav Neurol 2021; 2021:5586523. [PMID: 34539934 PMCID: PMC8448597 DOI: 10.1155/2021/5586523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are some of the most common types of traumatic lesions affecting the nervous system. Although the peripheral nervous system has a higher regenerative ability than the central nervous system, delayed treatment is associated with disturbances in both distal sensory and functional abilities. Over the past decades, adult stem cell-based therapies for peripheral nerve injuries have drawn attention from researchers. This is because various stem cells can promote regeneration after peripheral nerve injuries by differentiating into neural-line cells, secreting various neurotrophic factors, and regulating the activity of in situ Schwann cells (SCs). This article reviewed research from the past 10 years on the role of stem cells in the repair of PNIs. We concluded that adult stem cell-based therapies promote the regeneration of PNI in various ways.
Collapse
|
9
|
Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo. Stem Cells Int 2021; 2021:6613029. [PMID: 33488738 PMCID: PMC7801080 DOI: 10.1155/2021/6613029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injury remains a clinical challenge with severe physiological and functional consequences. Despite the existence of multiple possible therapeutic approaches, until now, there is no consensus regarding the advantages of each option or the best methodology in promoting nerve regeneration. Regenerative medicine is a promise to overcome this medical limitation, and in this work, chitosan nerve guide conduits and olfactory mucosa mesenchymal stem/stromal cells were applied in different therapeutic combinations to promote regeneration in sciatic nerves after neurotmesis injury. Over 20 weeks, the intervened animals were subjected to a regular functional assessment (determination of motor performance, nociception, and sciatic indexes), and after this period, they were evaluated kinematically and the sciatic nerves and cranial tibial muscles were evaluated stereologically and histomorphometrically, respectively. The results obtained allowed confirming the beneficial effects of using these therapeutic approaches. The use of chitosan NGCs and cells resulted in better motor performance, better sciatic indexes, and lower gait dysfunction after 20 weeks. The use of only NGGs demonstrated better nociceptive recoveries. The stereological evaluation of the sciatic nerve revealed identical values in the different parameters for all therapeutic groups. In the muscle histomorphometric evaluation, the groups treated with NGCs and cells showed results close to those of the group that received traditional sutures, the one with the best final values. The therapeutic combinations studied show promising outcomes and should be the target of new future works to overcome some irregularities found in the results and establish the combination of nerve guidance conduits and olfactory mucosa mesenchymal stem/stromal cells as viable options in the treatment of peripheral nerves after injury.
Collapse
|
10
|
Pro-angiogenic scaffold-free Bio three-dimensional conduit developed from human induced pluripotent stem cell-derived mesenchymal stem cells promotes peripheral nerve regeneration. Sci Rep 2020; 10:12034. [PMID: 32694698 PMCID: PMC7374629 DOI: 10.1038/s41598-020-68745-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Although autologous nerve grafting is widely accepted as the gold standard treatment for segmental nerve defects, harvesting autologous nerves is highly invasive and leads to functional loss of the ablated part. In response, artificial nerve conduits made of artificial materials have been reported, but the efficacy of the nerve regeneration still needs improvement. The purpose of this study is to investigate the efficacy and mechanism of the Bio three-dimensional (3D) conduit composed of xeno-free human induced pluripotent stem cell–derived mesenchymal stem cells (iMSCs). The 5-mm nerve gap of the sciatic nerve in immunodeficient rats was bridged with the Bio 3D conduit or silicone tube. Functional and histological recovery were assessed at 8 weeks after surgery. The regenerated nerve in the Bio 3D group was significantly superior to that in the silicone group based on morphology, kinematics, electrophysiology, and wet muscle weight. Gene expression analyses demonstrated neurotrophic and angiogenic factors. Macroscopic observation revealed neovascularization both inside and on the surface of the Bio 3D conduit. Upon their subcutaneous implantation, iMSCs could induce angiogenesis. The Bio 3D conduit fabricated from iMSCs are an effective strategy for nerve regeneration in animal model. This technology will be useful in future clinical situations.
Collapse
|
11
|
Bonnet M, Guiraudie-Capraz G, Marqueste T, Garcia S, Jaloux C, Decherchi P, Féron F. Immediate or Delayed Transplantation of a Vein Conduit Filled with Nasal Olfactory Stem Cells Improves Locomotion and Axogenesis in Rats after a Peroneal Nerve Loss of Substance. Int J Mol Sci 2020; 21:E2670. [PMID: 32290426 PMCID: PMC7215801 DOI: 10.3390/ijms21082670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 02/02/2023] Open
Abstract
Over the recent years, several methods have been experienced to repair injured peripheral nerves. Among investigated strategies, the use of natural or synthetic conduits was validated for clinical application. In this study, we assessed the therapeutic potential of vein guides, transplanted immediately or two weeks after a peroneal nerve injury and filled with olfactory ecto-mesenchymal stem cells (OEMSC). Rats were randomly allocated to five groups. A3 mm peroneal nerve loss was bridged, acutely or chronically, with a 1 cm long femoral vein and with/without OEMSCs. These four groups were compared to unoperated rats (Control group). OEMSCs were purified from male olfactory mucosae and grafted into female hosts. Three months after surgery, nerve repair was analyzed by measuring locomotor function, mechanical muscle properties, muscle mass, axon number, and myelination. We observed that stem cells significantly (i) increased locomotor recovery, (ii) partially maintained the contractile phenotype of the target muscle, and (iii) augmented the number of growing axons. OEMSCs remained in the nerve and did not migrate in other organs. These results open the way for a phase I/IIa clinical trial based on the autologous engraftment of OEMSCs in patients with a nerve injury, especially those with neglected wounds.
Collapse
Affiliation(s)
- Maxime Bonnet
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CEDEX 09, F-13288 Marseille, France; (M.B.); (T.M.); (P.D.)
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
| | - Gaëlle Guiraudie-Capraz
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
| | - Tanguy Marqueste
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CEDEX 09, F-13288 Marseille, France; (M.B.); (T.M.); (P.D.)
| | - Stéphane Garcia
- APHM, Laboratoire d’Anatomie Pathologique, Hôpital Nord, Chemin des Bourrely, CEDEX 20, F-13915 Marseille, France;
| | - Charlotte Jaloux
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
- APHM, Unité de Culture et Thérapie Cellulaire, Hôpital de la Conception, F-13006 Marseille, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CEDEX 09, F-13288 Marseille, France; (M.B.); (T.M.); (P.D.)
| | - François Féron
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
- APHM, Unité de Culture et Thérapie Cellulaire, Hôpital de la Conception, F-13006 Marseille, France
| |
Collapse
|
12
|
Kočí Z, Sridharan R, Hibbitts AJ, Kneafsey SL, Kearney CJ, O'Brien FJ. The Use of Genipin as an Effective, Biocompatible, Anti-Inflammatory Cross-Linking Method for Nerve Guidance Conduits. ACTA ACUST UNITED AC 2020; 4:e1900212. [PMID: 32293152 DOI: 10.1002/adbi.201900212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/06/2019] [Indexed: 11/09/2022]
Abstract
A number of natural polymer biomaterial-based nerve guidance conduits (NGCs) are developed to facilitate repair of peripheral nerve injuries. Cross-linking ensures mechanical integrity and desired degradation properties of the NGCs; however, common methods such as formaldehyde are associated with cellular toxicity. Hence, there is an unmet clinical need for alternative nontoxic cross-linking agents. In this study, collagen-based NGCs with a collagen/chondroitin sulfate luminal filler are used to study the effect of cross-linking on mechanical and structural properties, degradation, biocompatibility, and immunological response. A simplified manufacturing method of genipin cross-linking is developed, by incorporating genipin into solution prior to freeze-drying the NGCs. This leads to successful cross-linking as demonstrated by higher cross-linking degree and similar tensile strength of genipin cross-linked conduits compared to formaldehyde cross-linked conduits. Genipin cross-linking also preserves NGC macro and microstructure as observed through scanning electron microscopy and spectral analysis. Most importantly, in vitro cell studies show that genipin, unlike the formaldehyde cross-linked conduits, supports the viability of Schwann cells. Moreover, genipin cross-linked conduits direct macrophages away from a pro-inflammatory and toward a pro-repair state. Overall, genipin is demonstrated to be an effective, safe, biocompatible, and anti-inflammatory alternative to formaldehyde for cross-linking clinical grade NGCs.
Collapse
Affiliation(s)
- Zuzana Kočí
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Rukmani Sridharan
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Alan J Hibbitts
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Simone L Kneafsey
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| |
Collapse
|
13
|
Alvites RD, Branquinho MV, Caseiro AR, Amorim I, Santos Pedrosa S, Rêma A, Faria F, Porto B, Oliveira C, Teixeira P, Magalhães R, Geuna S, Varejão ASP, Maurício AC. Rat Olfactory Mucosa Mesenchymal Stem/Stromal Cells (OM-MSCs): A Characterization Study. Int J Cell Biol 2020; 2020:2938258. [PMID: 32411249 PMCID: PMC7212324 DOI: 10.1155/2020/2938258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Stem/stromal cell-based therapies are a branch of regenerative medicine and stand as an attractive option to promote the repair of damaged or dysfunctional tissues and organs. Olfactory mucosa mesenchymal stem/stromal cells have been regarded as a promising tool in regenerative therapies because of their several favorable properties such as multipotency, high proliferation rate, helpful location, and few associated ethical issues. These cells are easily accessible in the nasal cavity of most mammals, including the rat, can be easily applied in autologous treatments, and do not cope with most of the obstacles associated with the use of other stem cells. Despite this, its application in preclinical trials and in both human and animal patients is still limited because of the small number of studies performed so far and to the nonexistence of a standard and unambiguous protocol for collection, isolation, and therapeutic application. In the present work a validation of a protocol for isolation, culture, expansion, freezing, and thawing of olfactory mucosa mesenchymal stem/stromal cells was performed, applied to the rat model, as well as a biological characterization of these cells. To investigate the therapeutic potential of OM-MSCs and their eventual safe application in preclinical trials, the main characteristics of OMSC stemness were addressed.
Collapse
Affiliation(s)
- Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana R. Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, nº 197 Lordemão, 3020-210 Coimbra, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Artur S. P. Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
14
|
Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. J Control Release 2019; 304:51-64. [DOI: 10.1016/j.jconrel.2019.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
|
15
|
Almouemen N, Kelly HM, O'Leary C. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Comput Struct Biotechnol J 2019; 17:591-598. [PMID: 31080565 PMCID: PMC6502738 DOI: 10.1016/j.csbj.2019.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/26/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Within the past 25 years, tissue engineering (TE) has grown enormously as a science and as an industry. Although classically concerned with the recapitulation of tissue and organ formation in our body for regenerative medicine, the evolution of TE research is intertwined with progress in other fields through the examination of cell function and behaviour in isolated biomimetic microenvironments. As such, TE applications now extend beyond the field of tissue regeneration research, operating as a platform for modifiable, physiologically-representative in vitro models with the potential to improve the translation of novel therapeutics into the clinic through a more informed understanding of the relevant molecular biology, structural biology, anatomy, and physiology. By virtue of their biomimicry, TE constructs incorporate features of extracellular macrostructure, molecular adhesive moieties, and biomechanical properties, converging with computational and structural biotechnology advances. Accordingly, this mini-review serves to contextualise TE for the computational and structural biotechnology reader and provides an outlook on how the disciplines overlap with respect to relevant advanced analytical applications.
Collapse
Affiliation(s)
- Nour Almouemen
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Helena M. Kelly
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Cian O'Leary
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
16
|
In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun. Acta Biomater 2018; 75:115-128. [PMID: 29885855 DOI: 10.1016/j.actbio.2018.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
Abstract
Despite the success of tissue engineered nerve guidance conduits (NGCs) for the treatment of small peripheral nerve injuries, autografts remain the clinical gold standard for larger injuries. The delivery of neurotrophic factors from conduits might enhance repair for more effective treatment of larger injuries but the efficacy of such systems is dependent on a safe, effective platform for controlled and localised therapeutic delivery. Gene therapy might offer an innovative approach to control the timing, release and level of neurotrophic factor production by directing cells to transiently sustain therapeutic protein production in situ. In this study, a gene-activated NGC was developed by incorporating non-viral polyethyleneimine-plasmid DNA (PEI-pDNA) nanoparticles (N/P 7 ratio, 2 μg dose) with the pDNA encoding for nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) or the transcription factor c-Jun. The physicochemical properties of PEI-pDNA nanoparticles, morphology, size and charge, were shown to be suitable for gene delivery and demonstrated high Schwann cell transfection efficiency (60 ± 13%) in vitro. While all three genes showed therapeutic potential in terms of enhancing neurotrophic cytokine production while promoting neurite outgrowth, delivery of the gene encoding for c-Jun showed the greatest capacity to enhance regenerative cellular processes in vitro. Ultimately, this gene-activated NGC construct was shown to be capable of transfecting both Schwann cells (S42 cells) and neuronal cells (PC12 and dorsal root ganglia) in vitro, demonstrating potential for future therapeutic applications in vivo. STATEMENT OF SIGNIFICANCE The basic requirements of biomaterial-based nerve guidance conduits have now been well established and include being able to bridge a nerve injury to support macroscopic guidance between nerve stumps, while being strong enough to withstand longitudinal tension and circumferential compression, in addition to being mechanically sound to facilitate surgical handling and implantation. While meeting these criteria, conduits are still limited to the treatment of small defects clinically and might benefit from additional biochemical stimuli to enhance repair for the effective treatment of larger injuries. In this study, a gene activated conduit was successfully developed by incorporating non-viral nanoparticles capable of efficient Schwann cell and neuronal cell transfection with therapeutic genes in vitro, which showed potential to enhance repair in future applications particularly when taking advantage of the transcription factor c-Jun. This innovative approach may provide an alternative to conduits used as platforms for the delivery neurotrophic factors or genetically modified cells (viral gene therapy), and a potential solution for the unmet clinical need to repair large peripheral nerve injury effectively.
Collapse
|
17
|
Pawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. ACTA ACUST UNITED AC 2018; 13:044104. [PMID: 29411711 DOI: 10.1088/1748-605x/aaad85] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In a previous study, we demonstrated a novel manufacturing approach to fabricate multi-channel scaffolds (MCS) for use in spinal cord injuries (SCI). In the present study, we extended similar materials processing technology to fabricate significantly longer (5X) porous poly caprolactone (PCL) MCS and evaluated their efficacy in 1 cm sciatic peripheral nerve injury (PNI) model. Due to the increase in MCS dimensions and the challenges that may arise in a longer nerve gap model, microstructural characterization involved MCS wall permeability to assess nutrient flow, topography, and microstructural uniformity to evaluate the potential for homogeneous linear axon guidance. It was determined that the wall permeability dramatically varied from 0.02 ± 0.01 × 10-13 to 21.7 ± 11.4 × 10-13 m2 for 50% and 70% porous PCL, respectively. Using interferometry, the porous PCL surface roughness was determined to be 10.7 ± 1.2 μm, which is believed to be sufficient to promote cell integration. Using micro computed tomography, the 3D MCS microstructure was determined to be uniform over 1 cm with an open lumen volume of 44.6% ± 3.6%. In vivo implantation, in the rat sciatic nerve model, over 4 weeks, demonstrated that MCS scaffolds maintained structural integrity, were biocompatible, and supported linear axon guidance and distal end egress over 1 cm. Taken together, this study demonstrated that MCS technology previously developed for the SCI is also relevant to longer nerve gap PNI.
Collapse
Affiliation(s)
- K M Pawelec
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | |
Collapse
|