1
|
Liu ZH, Xie QQ, Huang JL. Stromal vascular fraction: Mechanisms and application in reproductive disorders. World J Stem Cells 2025; 17:101097. [PMID: 39866896 PMCID: PMC11752457 DOI: 10.4252/wjsc.v17.i1.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
Stromal vascular fraction (SVF) is a complex mixture derived from adipose tissue, consisting of a variety of cells. Due to its potential for tissue repair, immunomodulation, and support of angiogenesis, SVF represents a promising frontier in regenerative medicine and offers potential therapy for a range of disease conditions. In this article, we delve into the mechanisms through which SVF exerts its effects and explore its potential applications in treating both male and female reproductive disorders, including erectile dysfunction, testicular injury, stress urinary incontinence and intrauterine adhesion.
Collapse
Affiliation(s)
- Zhi-Han Liu
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Qi-Qi Xie
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang 330000, Jiangxi Province, China
| | - Jia-Lyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang 330008, Jiangxi Province, China.
| |
Collapse
|
2
|
Zhang Y, Wang W, Chen L, Wang H, Dong D, Zhu J, Guo Y, Zhou Y, Liu T, Fu W. Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift. Bioeng Transl Med 2025; 10:e10711. [PMID: 39801749 PMCID: PMC11711206 DOI: 10.1002/btm2.10711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate. In vitro experiments demonstrated that IL-10 modRNA-transfected hADSCs effectively modulated macrophage polarization towards an anti-inflammatory phenotype. In vivo experiments with a well-established murine model demonstrated that transplantation of hADSCsmodIL-10 on postoperative day 5 (POD5) significantly improved wound healing outcomes, including accelerated wound closure, enhanced re-epithelialization, promoted M2 polarization, improved collagen deposition, and increased neovascularization. This study concludes that IL-10 modRNA-enriched hADSCs offer a promising therapeutic approach for diabetic wound healing, with the timing of IL-10 administration playing a crucial role in its effectiveness. These cells modulate macrophage polarization and promote tissue repair, demonstrating their potential for improving the management of diabetic wounds.
Collapse
Affiliation(s)
- Yuxin Zhang
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Wei Wang
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Liang Chen
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Heng Wang
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Dong Dong
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Jingjing Zhu
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Yu Guo
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Yiqun Zhou
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Tianyi Liu
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Hekimoglu ER, Esrefoglu M, Karakaya Cimen FB, Elibol B, Dedeakayogullari H, Pasin Ö. Beneficial effects of adipose-derived stromal vascular fraction on testicular injury caused by busulfan. Drug Chem Toxicol 2024; 47:1018-1032. [PMID: 38465409 DOI: 10.1080/01480545.2024.2324332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
The use of stem cells can attenuate testicular injury and promote sperm production. The adipose-derived stromal vascular fraction (SVF) has become an attractive cell source for cell-based therapies. In this study, we aimed to investigate the therapeutic efficacy of SVF on busulfan-induced testicular damage in rats. Twenty-four male rats were randomly divided into control, busulfan, SVF, and busulfan + SVF groups. Testicular damage was induced by intraperitoneal administration of busulfan (35 mg/kg). SVF obtained from human adipose tissue using Lipocube SVF™ was injected into rats 5 weeks after busulfan administration. At the end of the 8th week, rats were sacrificed, and histopathological, biochemical, and western blotting analyses were performed. No harmful effects of SVF on healthy testis tissue and sperm parameters were detected. SVF improved busulfan-induced oxidative stress in both testis tissue and serum. SVF injection to damaged testicular tissue resulted in increases in the healthy spermatozoon numbers and decreases in the abnormal tail numbers. Additionally, SVF increased bax/Bcl, DAZL, and TGF-β1 levels whereas decreased ATG5 and NF-kB levels. According to the results we obtained in this study, we suggest that SVF is beneficial in restoring damaged tissue by primarily being a multipotent cell source, by inhibiting oxidative stress and converting necrotic cell death to apoptotic cell death. In the future, clinical applications should bring higher benefits. Since SVF is the patient's own tissue, being harmless, it will offer an advantageous supportive treatment option for patients already weakened by cancer and anticancer therapy.
Collapse
Affiliation(s)
- E Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
4
|
Yang T, Zhao F, Zhao J, Geng J, Shao C, Liu J, Sheng F, Zhou L, Xu H, Jia R. Negatively charged bladder acellular matrix loaded with positively charged adipose-derived mesenchymal stem cell-derived small extracellular vesicles for bladder tissue engineering. J Control Release 2023; 364:718-733. [PMID: 37944669 DOI: 10.1016/j.jconrel.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Adipose-derived mesenchymal stem cell-derived small extracellular vesicles (Ad-MSC-sEVs/AMEs) combined with scaffold materials are used in tissue-engineered bladders; however, the lack of retention leads to limited distribution of AMEs in the scaffold areas and low bioavailability of AMEs after bladder reconstruction. To improve retention of AMEs, we developed a novel strategy that modifies the surface charge of the bladder acellular matrix (BAM) via oxidative self-polymerization of dopamine-reducing graphene oxide (GO) and AMEs using ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD). We evaluated two BAM surface modification methods and evaluated the biocompatibility of materials and PPD and electrostatic adherence effects between PPD-modified AMEs and rGO-PDA/BAM in vivo and in vitro. Surface modification increased retention of AMEs, enhanced regeneration of bladder structures, and increased electrical conductivity of rGO-PDA/BAM, thereby improving bladder function recovery. RNA-sequencing revealed 543 miRNAs in human AMEs and 514 miRNAs in rat AMEs. A Venn diagram was used to show target genes of miRNA with the highest proportion predicted by the four databases; related biological processes and pathways were predicted by KEGG and GO analyses. We report a strategy for improving bioavailability of AMEs for bladder reconstruction and reveal that enriched miR-21-5p targets PIK3R1 and activates the PI3K/Akt pathway to promote cell proliferation and migration.
Collapse
Affiliation(s)
- Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jian Geng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Cheng Shao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Fei Sheng
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Hua Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
5
|
Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. Vet Q 2022; 42:151-166. [PMID: 35841195 PMCID: PMC9364732 DOI: 10.1080/01652176.2022.2102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell population, including the multipotent mesenchymal stem cells, hematopoietic stem cells, immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tissue-derived mesenchymal stem cells (AdMSCs), are one of the important components of AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic methods. The enzymatic method is considered to be the gold standard technique due to its higher yield. The cellular components of AdSVF can be resuspended in normal saline, platelet-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly isolated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has already been proven to possess therapeutic potential for osteoarthritis management. It is also an attractive therapeutic option for enhancing wound healing. In addition, the combined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerating wound healing and can be considered an alternative to AdMSC treatment. It is also widely used for managing various orthopaedic conditions in clinical settings and has the potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used along with bone substitutes and other biological factors as an alternative to conventional bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon injuries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness, making it ideal for clinical use.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Kaveri Jambagi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir-190006, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| |
Collapse
|
6
|
Liu H, Shi M, Li X, Lu W, Zhang M, Zhang T, Wu Y, Zhang Z, Cui Q, Yang S, Li Z. Adipose Mesenchymal Stromal Cell-Derived Exosomes Prevent Testicular Torsion Injury via Activating PI3K/AKT and MAPK/ERK1/2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8065771. [PMID: 35757503 PMCID: PMC9225846 DOI: 10.1155/2022/8065771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
Adipose mesenchymal stromal cell-derived exosomes (ADSC-Exos) have shown great potential in the treatment of oxidative stress induced by ischemia-reperfusion injury. However, alleviation of testicular torsion injury by ADSC-Exos has not been reported. Therefore, we investigated the protective effect of ADSC-Exos against testicular torsion-detorsion injury. ADSC-Exos were isolated by ultracentrifugation and injected into torsion-detorsion-affected testes of rats. H&E staining and sperm quality were used to evaluate the therapeutic effects of ADSC-Exos, and tissue oxidative stress was measured by determining MDA and SOD levels. In addition, TUNEL staining and immunohistological analysis (Ki67, Cleaved Caspase-3, IL-6, IL-10, CCR7, and CD163) were used to clarify the effects of ADSC-Exos on spermatogenic cell proliferation, apoptosis, and the inflammatory microenvironment in vivo. Possible signaling pathways were predicted using sequencing technology and bioinformatics analysis. The predicted signaling pathways were validated in vitro by assessing the proliferation (EdU assay), migration (transwell assay and scratch test), and apoptosis (flow cytometry, TUNEL staining, and western blotting) of spermatogenic cells. The results showed that ADSC-Exos alleviated testicular torsion-detorsion injury by attenuating oxidative stress and the inflammatory response. In addition, ADSC-Exos promoted the proliferation and migration of spermatogenic cells and inhibited their apoptosis by activating the PI3K/AKT and MAPK/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Xiangqi Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Wenjun Lu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Yang Wu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin 150001, China
| |
Collapse
|
7
|
Zhou L, Yang T, Zhao F, Song K, Xu L, Xu Z, Zhou C, Qin Z, Xu Z, Wu R, Xu H, Jia R. Effect of uncultured adipose-derived stromal vascular fraction on preventing urethral stricture formation in rats. Sci Rep 2022; 12:3573. [PMID: 35246575 PMCID: PMC8897427 DOI: 10.1038/s41598-022-07472-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
Urethral stricture (US) remains a challenging disease without effective treatment options due to the high recurrence rate. This study aims to evaluate the preventive effect of uncultured adipose derived stromal vascular fraction (SVF) on urethral fibrosis in a rat model of US. Results demonstrated that US rats displayed hyperechogenic urethral wall with a narrowed lumen compared with sham rats, while SVF rats exhibited less extensive urethral changes. By histology, US rats showed obvious submucosal fibrosis in the urethral specimens, while SVF rats exhibited mild submucosal fibrosis with less extensive tissue changes. Furthermore, US rats showed increased gene and protein expression of collagen I (2.0 ± 0.2, 2.2 ± 0.2, all were normalized against GAPDH, including the following), collagen III (2.5 ± 0.3, 1.2 ± 0.1), and TGFβ1R (2.8 ± 0.3, 1.9 ± 0.2), while SVF cells administration contributed to decreased gene and protein expression of collagen I (1.6 ± 0.2, 1.6 ± 0.2), collagen III (1.8 ± 0.4, 0.9 ± 0.1), and TGFβ1R (1.8 ± 0.3, 1.3 ± 0.2), in parallel with the improvement of vascularization and increased expression of VEGF (1.7 ± 0.1) and bFGF (3.1 ± 0.3). Additionally, SVF served anti-inflammatory effect through regulation of inflammatory cytokines and cells, accompanied with conversion of the macrophage phenotype. Our findings suggested that uncultured SVF presented an inhibitory effect on stricture formation at an early stage of urethral fibrosis.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Kaiwei Song
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Zhongle Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Hua Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing, 210096, China.
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
8
|
Liu J, Zhou L, Zhao F, Zhou C, Yang T, Xu Z, Wang X, Xu L, Xu Z, Ge Y, Wu R, Jia R. Therapeutic effect of adipose stromal vascular fraction spheroids for partial bladder outlet obstruction induced underactive bladder. Stem Cell Res Ther 2022; 13:68. [PMID: 35139904 PMCID: PMC8826668 DOI: 10.1186/s13287-022-02739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Underactive bladder (UAB) is a common clinical problem but related research is rarely explored. As there are currently no effective therapies, the administration of adipose stromal vascular fraction (ad-SVF) provides a new potential method to treat underactive bladder. METHODS Male Sprague-Dawley rats were induced by partial bladder outlet obstruction (PBOO) for four weeks and randomly divided into three groups: rats treated with PBS (Sham group); rats administrated with ad-SVF (ad-SVF group) and rats performed with ad-SVF spheroids (ad-SVFsp group). After four weeks, urodynamic studies were performed to evaluate bladder functions and all rats were sacrificed for further studies. RESULTS We observed that the bladder functions and symptoms of UAB were significantly improved in the ad-SVFsp group than that in the Sham group and ad-SVF group. Meanwhile, our data showed that ad-SVF spheroids could remarkably promote angiogenesis, suppress cell apoptosis and stimulate cell proliferation in bladder tissue than that in the other two groups. Moreover, ad-SVF spheroids increased the expression levels of bFGF, HGF and VEGF-A than ad-SVF. IVIS Spectrum small-animal in vivo imaging system revealed that ad-SVF spheroids could increase the retention rate of transplanted cells in bladder tissue. CONCLUSIONS Ad-SVF spheroids improved functions and symptoms of bladder induced by PBOO, which contributes to promote angiogenesis, suppress cell apoptosis and stimulate cell proliferation. Ad-SVF spheroids provide a potential treatment for the future patients with UAB.
Collapse
Affiliation(s)
- Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zhongle Xu
- Department of Urology, Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, People's Republic of China
| | - Xinning Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Wang B, Xu J, Jiang S, Wang Y, Zhu J, Zhang Y. Combined Analysis of Gut Microbiota and Plasma Metabolites Reveals the Effect of Red-Fleshed Apple Anthocyanin Extract on Dysfunction of Mice Reproductive System Induced by Busulfan. Front Nutr 2022; 8:802352. [PMID: 35096946 PMCID: PMC8789878 DOI: 10.3389/fnut.2021.802352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Busulfan is currently an indispensable anti-cancer drug, but the side effects on male reproductive system are so serious. Meanwhile, red-fleshed apples are natural products with high anthocyanin content. In this research, we analyzed the effect of red-fleshed apple anthocyanin extract (RAAE) on busulfan-treated mice. Compared with the busulfan group, main plasma biochemical indicators were significantly improved after RAAE treatment. Compared with BA0 (busulfan without RAAE) group, total antioxidant capacity(T-AOC) and the activity of superoxide dismutase (SOD) and glutathione catalase (GSH-Px) in RAAE treatment groups were obviously increased, while the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly decreased. Malondialdehyde (MDA) was significantly decreased in the RAAE groups. In addition, we found RAAE alleviated busulfan-disrupted spermatogenesis through improving genes expression which are important for spermatogenesis, such as DDX4, PGK2, and TP1. Furthermore, we found that RAAE increased beneficial bacteria Akkermansia and Lactobacillaceae, and significantly depleted harmful bacteria Erysipelotrichia. The correlation studies indicated that RAAE ameliorated busulfan-induced rise in LysoPC levels through regulating gut microbial community and their associated metabolites. In conclusion, this study extends our understanding of the alleviated effect of RAAE on busulfan-induced male reproductive dysfunction through regulating the relationships between gut microbiota and metabolites.
Collapse
Affiliation(s)
- Bin Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jihua Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shenhui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Unsal V, Kolukcu E, Gevrek F, Firat F. Sinapic acid reduces ischemia/reperfusion injury due to testicular torsion/detorsion in rats. Andrologia 2021; 53:e14117. [PMID: 34081348 DOI: 10.1111/and.14117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
This study aimed to investigate the protective effect of sinapic acid (SA) on biochemical and histopathological changes in an experimental testicular torsion-detorsion rat model. Twenty-four rats were randomised into four groups: sham group, ischemia/reperfusion (IR) group subjected to testicular torsion for 2 hr and then detorsion for 4 hr, and two groups treated with SA1 and SA2 (10 mg/kg and 20 mg/kg, by single intraperitoneal injection, 30 min before reperfusion). Serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were measured by an autoanalyzer, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), protein carbonyl (PC), and nitric oxide (NO) oxidative stress parameters by spectrophotometric methods, and tumour necrosis factor (TNF-α), interleukin-1 beta (IL-1β), and interleukin 6 (IL-6) parameters by the Elisa method. In addition, immunohistochemical and histopathological examinations were performed on testicular tissues. There was no significant difference between the groups in terms of serum testosterone, FSH and LH levels (p > .05). SA significantly reduced increased testicular damage, oxidative stress, inflammation, cell death and also restored decreased antioxidant enzyme activities (p < .05). Pre-treatment of rats with SA reduced testicular dysfunction and morphological changes IRI. SA's antioxidant, anti-inflammatory, and antiapoptotic properties were found to be protective against testicular IR.
Collapse
Affiliation(s)
- Velid Unsal
- Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, Turkey
| | - Engin Kolukcu
- Department of Urology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Fatih Firat
- Department of Urology, Tokat State Hospital, Tokat, Turkey
| |
Collapse
|
11
|
Wei SM, Wang RY, Chen YS. Sesamol Protects Testis from Ischemia-Reperfusion Injury through Scavenging Reactive Oxygen Species and Upregulating CREM τ Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9043806. [PMID: 32655774 PMCID: PMC7320277 DOI: 10.1155/2020/9043806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Testicular torsion/detorsion-induced damage is considered as a typical ischemia-reperfusion injury attributed to excessive reactive oxygen species (ROS) production. ROS may regulate many genes whose expression affects cell-cycle regulation, cell proliferation, and apoptosis. The cAMP-responsive element modulator-τ (CREMτ) gene expression in the testis is essential for normal germ cell differentiation. The present study was aimed at investigating the effect of sesamol, a powerful antioxidant, on testicular ischemia-reperfusion injury and related mechanisms in an experimental testicular torsion-detorsion rat model. The type of our study was a randomized controlled trial. Sixty rats were randomly divided into the following 3 groups: (1) sham-operated control group (n = 20), (2) testicular ischemia-reperfusion group (n = 20), and (3) testicular ischemia-reperfusion+sesamol-treated group (n = 20). Testicular ischemia-reperfusion was induced by left testicular torsion (720° rotation in a counterclockwise direction) for 2 hours, followed by detorsion. Orchiectomy was performed at 4 hours or 3 months after detorsion. The testis was obtained for the analysis of the following parameters, including malondialdehyde level (a sensitive indicator of ROS), CREMτ expression, and spermatogenesis. In the testicular ischemia-reperfusion group, the malondialdehyde level was significantly increased with a concomitant significant decrease in CREMτ expression and spermatogenesis in ipsilateral testis. These results suggest that overproduction of ROS after testicular ischemia-reperfusion may downregulate CREMτ expression, which causes spermatogenic injury. Sesamol treatment resulted in a significant reduction in the malondialdehyde level and significant increase in CREMτ expression and spermatogenesis in ipsilateral testis. These data support the above suggestion. Our study shows that sesamol can attenuate testicular ischemia-reperfusion injury through scavenging ROS and upregulating CREMτ expression.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, Zhejiang Province 310015, China
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, China
| | - Rong-Yun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, China
| | - Yan-Song Chen
- Department of Orthopedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province 311200, China
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou City, Zhejiang Province 310005, China
| |
Collapse
|
12
|
Chen LJ, Ning JZ, Cheng F, Rao T, Yu WM, Ruan Y, Wu JF, Li RG, Geng RX. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci 2020; 40:332-338. [DOI: 10.1007/s11596-020-2180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/05/2020] [Indexed: 10/24/2022]
|
13
|
Emulsified Fat Grafting Accelerates Tissue Expansion: An Experimental Study in a Rat Model. Ann Plast Surg 2019; 85:61-67. [PMID: 31855863 DOI: 10.1097/sap.0000000000002137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tissue expansion has been applied in tissue repair and reconstruction of large soft tissue defects. Stromal vascular fraction (SVF) transplantation is a promising treatment in raising expansion efficiency. However, the clinical utilization of SVF is limited because of its conventional collagenase-based production. The aim of this study was to evaluate the effect of emulsified fat (EF), SVF obtained by using mechanical method, on accelerating tissue expansion. MATERIALS AND METHODS The microstructure of EF fragments and the proportion of mesenchymal stem cells (MSCs; CD45-/CD34+) in EF were detected. Wistar rats were divided into the following 3 groups randomly: the 1-mL EF group, the 0.5-mL EF group, and the control group. The tissue expansion was carried out twice a week to maintain the capsule pressure at 60 mm Hg. After 4 weeks, inflation volume and histological changes, which includes collagen content, cell proliferation, and capillary density, were observed to evaluate the effect of EF on tissue expansion. RESULTS Mechanical emulsification effectively destroyed the mature adipocytes in adipose tissue. The proportion of MSCs population in the EF fragments was 12.40 ± 0.86%. After expansion, the inflation volume and the levels of collagen deposition, cell proliferation, and capillary density of the expanded tissue in the 1-mL EF group were significantly higher than that in the 0.5-mL EF group and the control group (P < 0.05). However, all these regenerative indicators in the 0.5-mL EF group showed no statistical difference from the control group (P > 0.05). The thickness of epidermal and dermal layers showed no significant difference among the 3 groups (P > 0.05). CONCLUSIONS Our findings suggested that EF grafting can be used as a new alternative to increase tissue expansion efficiency.
Collapse
|
14
|
Hsiao CH, Ji ATQ, Chang CC, Chien MH, Lee LM, Ho JHC. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res Ther 2019; 10:270. [PMID: 31445515 PMCID: PMC6708217 DOI: 10.1186/s13287-019-1351-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background Testicular torsion is an urological emergency that may lead to infertility due to ischemic injury. Promptly surgical correction by orchiopexy is the only way to avoid infertility and no effective treatment for restoration of spermatogenesis. We previously reported that mesenchymal stem cells (MSCs), through local injection upon testicular torsion-detorsion, restored the spermatogenesis without differentiation into sperm. In this study, molecular mechanisms of MSCs in regulating germ cell activity induced by testicular torsion-detorsion were investigated. Methods Sixteen male Sprague-Dawley rats 6–8 weeks old received left testis 720° torsion for 3 h followed by detorsion with or without MSCs. Right inguinal skin incision without testicular torsion served as control. MSCs with 3 × 104 cells were locally injected into left testis 30 min before detorsion. Three days after the surgery, orchiectomy was executed and the testis, epididymis, and sperm were separated to each other. Functional assessments on sperm included counting sperm amount and sperm motility, staining F-actin, and quantifying adenosine triphosphate (ATP) content. The hallmarks of glycogenesis and glycolysis in each tissue segment were measured by Western blot. Results Testicular torsion-detorsion significantly decreased the amount of sperm, inhibited the motility, declined the F-actin expression, and reduced the content of ATP in sperm. Local injection of MSCs improved sperm function, particularly in sperm motility. With MSCs, ATP content and F-actin were preserved after testicular torsion-detorsion. MSCs significantly reversed the imbalance of glycolysis in sperm and testis induced by testicular torsion-detorsion, as evidenced by increasing the expression of phosphoglycerate kinase 2 and glyceraldehyde-3-phosphate dehydrogenase-spermatogenic, activating Akt, and increasing glycogen synthase kinase 3 (GSK3), which led to the increase in glycolysis cascades and ATP production. Human stem cell factor contributed the activation of Akt/GSK3 axis when sperm suffered from testicular torsion-detorsion-induced germ cell injury. Conclusions Local injection of MSCs into a testis damaged by testicular torsion-detorsion restores sperm function mainly through the improvement of sperm motility and energy. MSCs reversed the imbalance of glycogenesis and glycolysis in sperm by regulating Akt/GSK3 axis. Thus, MSCs may potentially rescue torsion-detorsion-induced infertility via local injection.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, No.201, Sec.2, Shih-Pai Rd. Peitou, Taipei, 11221, Taiwan
| | - Chih-Cheng Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, #291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, No.201, Sec.2, Shih-Pai Rd. Peitou, Taipei, 11221, Taiwan.
| |
Collapse
|
15
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
16
|
Beegle JR. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Julie R. Beegle
- Institute for Regenerative Cures, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
17
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2019. [PMCID: PMC6431732 DOI: 10.1002/sctm.19-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|