1
|
Maltais-Bilodeau C, Henckel E, Deguise MO, Lesage F, Cobey KD, Ahmadzai N, Skidmore B, Ferretti E, Thébaud B. Cell-based therapies in preclinical models of necrotizing enterocolitis: a systematic review and meta-analysis. Stem Cells Transl Med 2025; 14:szae102. [PMID: 40036304 PMCID: PMC11878585 DOI: 10.1093/stcltm/szae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/18/2024] [Indexed: 03/06/2025] Open
Abstract
Necrotizing enterocolitis (NEC) remains an incurable gut complication of prematurity with significant morbidity and mortality. Cell therapies, including mesenchymal stromal cells (MSCs), may be a promising treatment given their anti-inflammatory and regenerative potential. We assessed the effect of MSCs and other cell therapies (not classified as MSCs) on incidence, severity, and mortality in preclinical models of NEC. Bibliographic and gray literature searches yielded 17 371 records with 107 full-text articles assessed and ultimately 16 studies were included. These studies featured only rodents NEC models via combination of hyperosmolar feeds, hypoxia, hypothermia, or lipopolysaccharides. Ten studies used interventions with MSCs. Only 2 met the minimal criteria to define MSCs proposed by the International Society for Cell & Gene Therapy (ISCT). The overall risk of bias was assessed as high partly due to paucity of data with important gaps in reporting, reinforcing the importance of rigorous research framework, appropriate cell-therapy and outcome reporting in preclinical research. A reduction in the incidence of NEC (odds ratio [OR] 0.32, 95% CI [0.17, 0.62]), severe NEC (OR 0.30, 95% CI [0.18, 0.50]), and mortality (OR 0.30, 95% CI [0.16, 0.55]) was noted with MSCs treatment, seemingly more pronounced for ISCT-defined (ISCT+) MSCs. Amniotic fluid stem cells, neural stem cells, and placenta stem cells also showed a reduction in these measures. Given their accessibility (ie, umbilical cord) and proven safety profile in extremely preterm infants, our analysis provides a foundation for considering MSCs as promising candidate that requires further evaluation for the treatment of NEC.
Collapse
Affiliation(s)
- Camille Maltais-Bilodeau
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
| | - Ewa Henckel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Neonatology, Karolinska University Hospital, Stockholm 171 77, Sweden
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marc-Olivier Deguise
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kelly D Cobey
- Meta Research and Open Science Program, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nadera Ahmadzai
- Independent Information Specialist, Ottawa, ON K1T 3Z2, Canada
| | - Becky Skidmore
- Independent Information Specialist, Ottawa, ON K1T 3Z2, Canada
| | - Emanuela Ferretti
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, General Campus, Ottawa, ON K1H 8L6, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Cui X, Fu J. Reinitiating lung development: a novel approach in the management of bronchopulmonary dysplasia. Respir Res 2024; 25:384. [PMID: 39449014 PMCID: PMC11515458 DOI: 10.1186/s12931-024-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the predominant chronic lung disease in preterm infants, linked with various adverse long-term outcomes. Multiple prenatal and postnatal risk factors can impede lung development, leading to BPD. Current management of BPD relies heavily on pharmacotherapies and alterations in ventilatory strategies. However, these interventions only mitigate BPD symptoms without addressing underlying alveolar, vascular, structural, and functional deficiencies. Given the retarded lung development in infants with BPD and the limitations of existing modalities, new therapeutic approaches are imperative. The induced differentiation of stem/progenitor cells and the spatiotemporal expression patterns of growth factors associated with lung developmental processes are critical for lung development reactivation in BPD, which focuses on stimulating pulmonary vasculogenesis and alveolarization. This review summarizes the process of lung development and offers a comprehensive overview of advancements in therapies designed to reinitiate lung development in BPD. Furthermore, we assessed the potential of these therapies for maintaining lung homeostasis and effectively restoring pulmonary structure and function through stem/progenitor cells and growth factors, which have been widely researched.
Collapse
Affiliation(s)
- Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
3
|
Durlak W, Thébaud B. BPD: Latest Strategies of Prevention and Treatment. Neonatology 2024; 121:596-607. [PMID: 39053447 DOI: 10.1159/000540002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common long-term complication of extreme preterm birth. It is associated with lifelong multisystemic consequences. Advances in neonatal care have not reduced the incidence of BPD and no new breakthrough therapy has been successfully translated into the clinic in recent decades. SUMMARY Current evidence demonstrates benefit of new modalities of first-line noninvasive positive pressure ventilation, selected strategies of postnatal corticosteroid administration, alternative surfactant delivery methods, and caffeine. Promising emerging therapies that are being translated from bench to bedside include mesenchymal stromal cells (MSCs), insulin-like growth factor 1/binding protein-3 (IGF-1/IGFBP-3), and interleukin 1 receptor (IL-1R) antagonist (anakinra). Strong preclinical data support efficacy of MSCs in attenuating neonatal lung injury. Early-phase clinical trials have already demonstrated safety and feasibility in preterm infants. Phase II studies that aimed at demonstrating efficacy are currently underway. Both IGF-1/IGFBP-3 and IL-1R antagonist present with biological plausibility and animal data of efficacy. Phase I/II clinical trials are currently recruiting patients. KEY MESSAGES Early noninvasive respiratory support, late systemic dexamethasone, less invasive surfactant administration, and caffeine are proven strategies in reducing the risk of BPD. Potentially disruptive therapies - MSCs, IGF-1/IGFBP-3, and anakinra - are being advanced to clinical trials and their efficacy in remains to be demonstrated. Continued research efforts are needed in the growing population of extremely preterm infants at risk of developing BPD.
Collapse
Affiliation(s)
- Wojciech Durlak
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Ao M, Ma H, Guo M, Dai X, Zhang X. Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia. Hum Cell 2024; 37:381-393. [PMID: 38159195 DOI: 10.1007/s13577-023-01018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a prevalent lung disease in neonates that is associated with numerous complications and high mortality. The promising approach to treat BPD is the use of mesenchymal stem cells (MSCs), However, the current treatment of MSCs presents safety concerns, including occlusion of blood vessels and tumorigenicity. In this study, relevant publications from the Web of Science Core Collection were downloaded in January 2023. The acquired data were analyzed and predicted for trends and hotspots in this field using CiteSpace software. Results revealed that in recent years, the focus of co-cited references has been primarily on the clinical studies of MSCs and the application of MSCs derivatives for treating BPD models. The keywords that have gained attention are extracellular vesicles and exosomes. The United States has emerged as the most influential co-authoring country in this field. Among the co-cited journals, the American Journal of Respiratory and Critical Care Medicine holds the highest influence. Thus, this study provides trends in publications, collaboration, research interests, and hotspots, and provides clues for novel ideas and strategies in to further MSCs treatments for BPD.
Collapse
Affiliation(s)
- Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
| |
Collapse
|
5
|
Keung C, Nguyen TC, Lim R, Gerstenmaier A, Sievert W, Moore GT. Local fistula injection of allogeneic human amnion epithelial cells is safe and well tolerated in patients with refractory complex perianal Crohn's disease: a phase I open label study with long-term follow up. EBioMedicine 2023; 98:104879. [PMID: 38042747 PMCID: PMC10755113 DOI: 10.1016/j.ebiom.2023.104879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Local fistula injection of mesenchymal stromal/stem cells (MSC) is effective for complex perianal Crohn's fistulas but is also expensive and requires specialised facilities for cell revival before administration. Human amnion epithelial cells (hAEC) are non-MSC cells with therapeutic properties. The primary aim of this study was safety of hAEC therapy. Secondary aims included hAEC efficacy, feasibility of the protocol and impact on quality of life. METHODS A phase I open label study of ten adults with active complex Crohn's perianal fistulas refractory to conventional treatment, including anti-tumour necrosis factor alpha therapy, was undertaken. A single dose of hAEC was injected into the fistula tract(s) after surgical closure of the internal opening(s). Study outcomes were assessed at week 24 with follow up for at least 52 weeks. FINDINGS Local injection of hAEC was safe, well tolerated and the injection procedure was feasible. Complete response occurred in 4 patients, and a partial response in an additional 4 patients. There was a mean reduction in the Perianal Disease Activity Index of 6.5 points (95% CI -9.0 to -4.0, p = 0.0002, paired t-test), modified Van Assche MRI Index of 2.3 points (95% CI -3.9 to -0.6, p = 0.012, paired t-test) and a mean improvement of 15.8 points (95% CI 4.9 to 26.8, p = 0.010, paired t-test) in quality of life using the Short IBD-Questionnaire in complete responders. INTERPRETATION Local injection of hAEC therapy for refractory complex perianal fistulising Crohn's disease appears safe, well-tolerated, feasible and demonstrated improvement. Quality of life is improved in those who achieve complete fistula healing. FUNDING This study was funded by competitive research grant funding from the Gastroenterological Society of Australia Seed Grant 2018.
Collapse
Affiliation(s)
- Charlotte Keung
- School of Clinical Sciences, Monash University, Australia; Department of Gastroenterology, Monash Health, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Australia.
| | | | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Australia
| | | | - William Sievert
- School of Clinical Sciences, Monash University, Australia; Department of Gastroenterology, Monash Health, Australia
| | - Gregory T Moore
- School of Clinical Sciences, Monash University, Australia; Department of Gastroenterology, Monash Health, Australia
| |
Collapse
|
6
|
Malhotra A, Thebaud B, Paton MCB, Fleiss B, Papagianis P, Baker E, Bennet L, Yawno T, Elwood N, Campbell B, Chand K, Zhou L, Penny T, Nguyen T, Pepe S, Gunn AJ, McDonald CA. Advances in neonatal cell therapies: Proceedings of the First Neonatal Cell Therapies Symposium (2022). Pediatr Res 2023; 94:1631-1638. [PMID: 37380752 PMCID: PMC10624618 DOI: 10.1038/s41390-023-02707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.
Collapse
Affiliation(s)
- Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| | - Bernard Thebaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Madison C B Paton
- Cerebral Palsy Alliance Research Institute; Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Paris Papagianis
- Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Elizabeth Baker
- Royal Women's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Laura Bennet
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tamara Yawno
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ngaire Elwood
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Belinda Campbell
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Kirat Chand
- Perinatal Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Tayla Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Timothy Nguyen
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Salvatore Pepe
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Ryan RM, Mukherjee D, Ford S, Lingappan K. Pharmacotherapy of BPD: Current status & future perspectives. Semin Perinatol 2023; 47:151819. [PMID: 37783580 DOI: 10.1016/j.semperi.2023.151819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a disease exclusive to prematurity and has changed in its definition since Northway first described it in 1967. There have been countless clinical trials evaluating the efficacy of drugs in the treatment and prevention of BPD in human subjects, and an even larger number of animal studies. Despite these, only a handful of drugs are used at the bedside today, primarily due to the lack of consistent efficacy seen in clinical trials or due to reports of adverse effects. This review summarizes the list of the most commonly used drugs and emerging new therapies which target BPD and BPD-related pulmonary hypertension (BPD-PH), including those which have shown promise in human trials but are not yet used routinely.
Collapse
Affiliation(s)
- Rita M Ryan
- UH Rainbow Babies & Children's Hospital and Case Western Reserve University, Cleveland, OH
| | - Devashis Mukherjee
- UH Rainbow Babies & Children's Hospital and Case Western Reserve University, Cleveland, OH.
| | - Stephanie Ford
- UH Rainbow Babies & Children's Hospital and Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
8
|
Marega M, El-Merhie N, Gökyildirim MY, Orth V, Bellusci S, Chao CM. Stem/Progenitor Cells and Related Therapy in Bronchopulmonary Dysplasia. Int J Mol Sci 2023; 24:11229. [PMID: 37446407 DOI: 10.3390/ijms241311229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors. Preclinical studies provide evidence in that MSCs have the potential to contribute to the repair of lung injuries. This review provides an overview of MSCs, and other stem/progenitor cells present in the lung, their identifying characteristics, and their differentiation potential, including cytokine/growth factor involvement. Furthermore, animal studies and clinical trials using stem cells or their secretome are reviewed. To bring MSC-based therapeutic options further to clinical use, standardized protocols are needed, and upcoming side effects must be critically evaluated. To fill these gaps of knowledge, the MSCs' behavior and the effects of their secretome have to be examined in more (pre-) clinical studies, from which only few have been designed to date.
Collapse
Affiliation(s)
- Manuela Marega
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Natalia El-Merhie
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Valerie Orth
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Saverio Bellusci
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
9
|
Tung S, Delavogia E, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Harnessing the therapeutic potential of the stem cell secretome in neonatal diseases. Semin Perinatol 2023; 47:151730. [PMID: 36990921 PMCID: PMC10133192 DOI: 10.1016/j.semperi.2023.151730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Preterm birth and intrapartum related complications account for a substantial amount of mortality and morbidity in the neonatal period despite significant advancements in neonatal-perinatal care. Currently, there is a noticeable lack of curative or preventative therapies available for any of the most common complications of prematurity including bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia and retinopathy of prematurity or hypoxic-ischemic encephalopathy, the main cause of perinatal brain injury in term infants. Mesenchymal stem/stromal cell-derived therapy has been an active area of investigation for the past decade and has demonstrated encouraging results in multiple experimental models of neonatal disease. It is now widely acknowledged that mesenchymal stem/stromal cells exert their therapeutic effects via their secretome, with the principal vector identified as extracellular vesicles. This review will focus on summarizing the current literature and investigations on mesenchymal stem/stromal cell-derived extracellular vesicles as a treatment for neonatal diseases and examine the considerations to their application in the clinical setting.
Collapse
Affiliation(s)
- Stephanie Tung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eleni Delavogia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
10
|
Thébaud B. Stem cell therapies for neonatal lung diseases: Are we there yet? Semin Perinatol 2023; 47:151724. [PMID: 36967368 DOI: 10.1016/j.semperi.2023.151724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Lung diseases are a main cause of mortality and morbidity in neonates. Despite major breakthroughs, therapies remain supportive and, in some instances, contribute to lung injury. Because the neonatal lung is still developing, the ideal therapy should be capable of preventing/repairing lung injury while at the same time, promoting lung growth. Cell-based therapies hold high hopes based on laboratory experiments in animal models of neonatal lung injury. Mesenchymal stromal cells and amnion epithelial cells are now in early phase clinical trials to test the feasibility, safety and early signs of efficacy in preterm infants at risk of developing bronchopulmonary dysplasia. Other cell-based therapies are being explored in experimental models of congenital diaphragmatic hernia and alveolar capillary dysplasia. This review will summarize current evidence that has lead to the clinical translation of cell-based therapies and highlights controversies and the numerous questions that remain to be addressed to harness the putative repair potential of cell-based therapies.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada.; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Damianos A, Sammour I. Barriers in translating stem cell therapies for neonatal diseases. Semin Perinatol 2023; 47:151731. [PMID: 36990922 DOI: 10.1016/j.semperi.2023.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Over the last 20 years, stem cells of varying origin and their associated secretome have been investigated as a therapeutic option for a myriad of neonatal models of disease, with very promising results. Despite the devastating nature of some of these disorders, translation of the preclinical evidence to the bedside has been slow. In this review, we explore the existing clinical evidence for stem cell therapies in neonates, highlight the barriers faced by researchers and suggest potential solutions to move the field forward.
Collapse
Affiliation(s)
- Andreas Damianos
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Ibrahim Sammour
- Riley Hospital for Children, Indiana University, Indianapolis, USA.
| |
Collapse
|
12
|
Giva S, Abdelrahim A, Ojinna BT, Putrevu VP, Bornemann EA, Farhat H, Amaravadi K, Ben Abdallah M, Gutlapalli SD, Penumetcha SS. Safety and Efficacy of Mesenchymal Stem Cells for the Treatment of Evolving and Established Bronchopulmonary Dysplasia: A Systematic Literature Review. Cureus 2022; 14:e32598. [PMID: 36660501 PMCID: PMC9845515 DOI: 10.7759/cureus.32598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a frequent sequela of modern medicine when infants are born prematurely. Currently, there is no single treatment or combination of treatments to prevent or fully treat BPD. Mesenchymal stem cells (MSCs) have promising properties that could aid in the reversal of lung injury, as seen in patients with BPD. This study reviews the available evidence regarding the safety and efficacy of the use of MSCs for the treatment of evolving and established BPD. This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We found eight studies that fulfilled the inclusion and exclusion criteria. While all studies proved the safety and efficacy of MSCs administered intravenously and intratracheally, the only available randomized controlled trial (RCT) failed to demonstrate the benefit of MSC administration in the early treatment of BPD. The remaining studies varied between phase I clinical trials and case reports, but all seemed to show some evidence that MSCs may be of benefit in the late treatment of established BPD. Considering some of the studies have less evidence, early treatment to prevent lung fibrosis may be more successful, particularly in the younger gestational ages where lung development is more immature, and research should focus on this.
Collapse
Affiliation(s)
- Sheiniz Giva
- Neonatology, Temple University Hospital, Dublin, IRL
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmed Abdelrahim
- Internal Medicine, Beaumont Hospital, Michigan, USA
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Blessing T Ojinna
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, University of Nigeria Nsukka, College of Medicine, Enugu, NGA
| | - Venkata Pravallika Putrevu
- Internal Medicine, Neurostar Multi-speciality Hospital, Kakinada, IND
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Elisa A Bornemann
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hadi Farhat
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, University of Balamand, Beirut, LBN
| | - Kavya Amaravadi
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mahmoud Ben Abdallah
- Internal Medicine, Manchester University NHS Foundation Trust, Manchester, GBR
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sai Sri Penumetcha
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
13
|
Zhu D, Krause M, Yawno T, Kusuma GD, Schwab R, Barabadi M, Maleken AS, Chan ST, Hunt R, Greening D, Wallace EM, Lim R. Assessing the impact of gestational age of donors on the efficacy of amniotic epithelial cell-derived extracellular vesicles in experimental bronchopulmonary dysplasia. Stem Cell Res Ther 2022; 13:196. [PMID: 35550006 PMCID: PMC9102678 DOI: 10.1186/s13287-022-02874-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background and rationale Extracellular vesicles (EVs) are a potential cell-free regenerative medicine. Human amniotic epithelial cells (hAECs) are a viable source of cell therapy for diseases like bronchopulmonary dysplasia (BPD). However, little is known about the impact of gestational age of the donor on the quality of hAEC-derived EVs.
Aims To determine the impact of gestational age on hAEC-derived EVs in experimental BPD.
Results Term hAEC-derived EVs displayed a significantly higher density of surface epitopes (CD142 and CD133) and induced greater macrophage phagocytosis compared to preterm hAEC-EVs. However, T cell proliferation was more significantly suppressed by preterm hAEC-EVs. Using a model of experimental BPD, we observed that term but not preterm hAEC-EVs improved tissue-to-airspace ratio and septal crest density. While both term and preterm hAEC-EVs reduced the levels of inflammatory cytokines on postnatal day 7, the improvement in lung injury was associated with increased type II alveolar cells which was only observed in term hAEC-EV treatment group. Furthermore, only neonatal term hAEC-EVs reduced airway hyper-responsiveness, mitigated pulmonary hypertension and protected against right ventricular hypertrophy at 6 weeks of age. Conclusion Term hAEC-EVs, but not preterm hAEC-EVs, have therapeutic efficacy in a mouse model of BPD-like lung injury. Therefore, the impact of donor criteria should be considered when applying perinatal cells-derived EV therapy for clinical use.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Mirja Krause
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia. .,Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| | - Gina D Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Renate Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Amina S Maleken
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Siow T Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Rod Hunt
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - David Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Central Clinical School, Monash University, Clayton, VIC, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
14
|
Hocq C, Vanhoutte L, Guilloteau A, Massolo AC, Van Grambezen B, Carkeek K, Piersigilli F, Danhaive O. Early diagnosis and targeted approaches to pulmonary vascular disease in bronchopulmonary dysplasia. Pediatr Res 2022; 91:804-815. [PMID: 33674739 DOI: 10.1038/s41390-021-01413-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Pulmonary hypertension has emerged as a life-threatening disease in preterm infants suffering from bronchopulmonary dysplasia (BPD). Its development is closely linked to respiratory disease, as vasculogenesis and alveologenesis are closely interconnected. Once clinically significant, BPD-associated pulmonary hypertension (BPD-PH) can be challenging to manage, due to poor reversibility and multiple comorbidities frequently associated. The pulmonary vascular disease process underlying BPD-PH is the result of multiple innate and acquired factors, and emerging evidence suggests that it progressively develops since birth and, in certain instances, may begin as early as fetal life. Therefore, early recognition and intervention are of great importance in order to improve long-term outcomes. Based on the most recent knowledge of BPD-PH pathophysiology, we review state-of-the-art screening and diagnostic imaging techniques currently available, their utility for clinicians, and their applicability and limitations in this specific population. We also discuss some biochemical markers studied in humans as a possible complement to imaging for the detection of pulmonary vascular disease at its early stages and the monitoring of its progression. In the second part, we review pharmacological agents currently available for BPD-PH treatment or under preclinical investigation, and discuss their applicability, as well as possible approaches for early-stage interventions in fetuses and neonates. IMPACT: BPD-associated PH is a complex disease involving genetic and epigenetic factors, as well as environmental exposures starting from fetal life. The value of combining multiple imaging and biochemical biomarkers is emerging, but requires larger, multicenter studies for validation and diffusion. Since "single-bullet" approaches have proven elusive so far, combined pharmacological regimen and cell-based therapies may represent important avenues for research leading to future cure and prevention.
Collapse
Affiliation(s)
- Catheline Hocq
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Laetitia Vanhoutte
- Division of Pediatric Cardiology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Axelle Guilloteau
- Division of Clinical Pharmacy, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Anna Claudia Massolo
- Department of Surgical and Medical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Bénédicte Van Grambezen
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Kate Carkeek
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Fiammetta Piersigilli
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Olivier Danhaive
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium. .,Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
15
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
16
|
Damianos A, Xu K, Kalin GT, Kalinichenko VV. Placental tissue stem cells and their role in neonatal diseases. Semin Fetal Neonatal Med 2022; 27:101322. [PMID: 34953760 DOI: 10.1016/j.siny.2021.101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neonatal diseases such as hypoxic ischemic encephalopathy, diseases of prematurity and congenital disorders carry increased morbidity and mortality. Despite technological advancements, their incidence remains largely unabated. Stem cell (SC) interventions are novel therapies in the neonatal world. In pre-clinical models of neonatal diseases, SC applications have shown encouraging results. SC sources vary, with the bone marrow being the most utilized. However, the ability to harvest bone marrow SCs from neonates is limited. Placental-tissue derived SCs (PTSCs), provide an alternative and highly attractive source. Human placentas, the cornerstone of fetal survival, are abundant with such cells. Comparing to adult pools, PTSCs exhibit increased potency, decreased immunogenicity and stronger anti-inflammatory effects. Several types of PTSCs have been identified, with mesenchymal stem cells being the most utilized population. This review will focus on PTSCs and their pre-clinical and clinical applications in neonatology.
Collapse
Affiliation(s)
- Andreas Damianos
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Kui Xu
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Sun YH, Yuan L, Du Y, Zhou JG, Lin SB, Zhang R, Dong Y, Chen C. Characterization of lung ultrasound imaging in preterm infants with bronchopulmonary dysplasia. Clin Hemorheol Microcirc 2022; 80:83-95. [PMID: 33935069 DOI: 10.3233/ch-211132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lung ultrasound (LUS) is a bedside technique that can be used on diagnosis and follow-up of neonatal respiratory diseases. However, there are rare reports on the ultrasound features of bronchopulmonary dysplasia (BPD) which is one of the most common chronic lung diseases in preterm infants. OBJECTIVE To describe the ultrasound features of different BPD levels, and to investigate the value of ultrasound in evaluating moderate-to-severe BPD. METHODS In this prospective cohort study, newborns of less than 37 weeks' gestational age in neonatal intensive care unit (NICU) were included. The LUS characteristics including pleural line, alveolar-interstitial syndrome (AIS), retrodiaphragmatic hyperechogenicity and diaphragmatic morphology were observed and recorded. The reliability of LUS in evaluating moderate and severe BPD were compared and calculated. RESULTS A total of 108 infants were enrolled in our study: 39, 24, 29, 16 infants had non, mild, moderate and severe BPD. The median(IQR) pleura thickness in the moderate-to-severe BPD group was 1.7(1.6-1.85) mm, which was thicker than that in the none-to-mild BPD infants (P < 0.001), meanwhile the proportions of rough pleural lines, diffuse AIS, retrodiaphragmatic hyperechogenicity, small cysts above the diaphragm and rough diaphragm in the moderate-to-severe BPD group were also higher than those in none-to-mild BPD group (86.7% vs 36.5, 57.8% vs 7.9%, 37.8% vs 0, 33.3% vs 0, P < 0.001). In evaluating moderate-to-severe BPD, rough pleura had 91.1% (95% confidence interval [CI]: 0.793-0.965) in sensitivity, 91.3% (95% CI: 0.797-0.966) in negative predictive value (NPV), and 66.7% (95% CI: 0.544-0.771) in specificity. Small cysts had 100% (95% CI: 0.941-1) in specificity, 100% (95% CI: 0.816-1) in positive predictive value (PPV), and 37.8% in sensitivity (95% CI: 0.251-0.524). Rough diaphragm had 100% (95% CI: 0.943-1) in sensitivity, 100% (95% CI: 0.796-1) in PPV and 33.3% (95% CI: 0.211-0.478) in specificity. CONCLUSIONS Depending on its unique advantages such as convenient, no radiation and repeatable, LUS is a valuable imaging method in assessing the severity of BPD, especially in moderate and severe BPD.
Collapse
Affiliation(s)
- Ying-Hua Sun
- Department of Ultrasound, Children's Hospital of Fudan University, Shanghai, China
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yuan
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Yang Du
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-Guo Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sam Bill Lin
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Al Mushafi A, Ooi JD, Odobasic D. Crescentic Glomerulonephritis: Pathogenesis and Therapeutic Potential of Human Amniotic Stem Cells. Front Physiol 2021; 12:724186. [PMID: 34721059 PMCID: PMC8554237 DOI: 10.3389/fphys.2021.724186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) leads to significant morbidity and mortality worldwide. Glomerulonephritis (GN) is the second leading cause of CKD resulting in end stage renal failure. The most severe and rapidly progressive type of GN is characterized by glomerular crescent formation. The current therapies for crescentic GN, which consist of broad immunosuppressive drugs, are partially effective, non-specific, toxic and cause many serious side effects including infections, cancer, and cardiovascular problems. Therefore, new and safer therapies are needed. Human amniotic epithelial cells (hAECs) are a type of stem cell which are isolated from the placenta after birth. They represent an attractive and novel therapeutic option for the treatment of various inflammatory conditions owing to their unique and selective immunosuppressive ability, as well as their excellent safety profile and clinical applicability. In this review, we will discuss the immunopathogenesis of crescentic GN, issues with currently available treatments and how hAECs offer potential to become a new and harmless treatment option for this condition.
Collapse
Affiliation(s)
- Ahmed Al Mushafi
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Joshua D Ooi
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Dragana Odobasic
- Department of Medicine, Monash Medical Centre, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| |
Collapse
|
19
|
Odobasic D, Holdsworth SR. Emerging Cellular Therapies for Anti-myeloperoxidase Vasculitis and Other Autoimmune Diseases. Front Immunol 2021; 12:642127. [PMID: 34394071 PMCID: PMC8358391 DOI: 10.3389/fimmu.2021.642127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/08/2021] [Indexed: 11/26/2022] Open
Abstract
Anti-myeloperoxidase vasculitis (MPO-AAV) is a life-threatening autoimmune disease which causes severe inflammation of small blood vessels, mainly in the kidney. As for many other autoimmune diseases, current treatments, which consist of general immunosuppressants, are partially effective, toxic and broadly immunosuppressive, causing significant and serious adverse effects in many patients. Therefore, there is an urgent need for more targeted and less harmful therapies. Tolerogenic dendritic cells, regulatory T cells and stem cells have emerged as attractive, new and safer options for the treatment for various autoimmune diseases due to their unique and selective immunosuppressive capacity. In this review, we will discuss how these cellular therapies offer potential to become novel and safer treatments for MPO-AAV.
Collapse
Affiliation(s)
- Dragana Odobasic
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, VIC, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Immunology, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
20
|
Takano C, Grubbs BH, Ishige M, Ogawa E, Morioka I, Hayakawa S, Miki T. Clinical perspective on the use of human amniotic epithelial cells to treat congenital metabolic diseases with a focus on maple syrup urine disease. Stem Cells Transl Med 2021; 10:829-835. [PMID: 33547875 PMCID: PMC8133340 DOI: 10.1002/sctm.20-0225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Congenital metabolic diseases are a group of hereditary disorders caused by the deficiency of a single specific enzyme activity. Without appropriate therapy, affected patients suffer severe neurologic disability and eventual death. The current mainstays of management attempt to slow disease progression, but are not curative. Several of these diseases have demonstrated significant benefits from liver transplantation; however, this approach is limited by the morbidity associated with this invasive procedure and a shortage of donor organs. Therefore, there is a need to establish a new strategy for improving the quality of a life for these patients. One potential solution is regenerative therapy using hepatocytes generated from stem cells. Herein, we discuss pertinent issues necessary for clinical application of the human amniotic epithelial cell, a type of placental stem cell. Focusing on maple syrup urine disease as an example, where liver replacement is an effective therapy, we explore this approach from a clinician's perspective.
Collapse
Affiliation(s)
- Chika Takano
- Division of Microbiology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Brendan H. Grubbs
- Department of Obstetrics and GynecologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mika Ishige
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Erika Ogawa
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Ichiro Morioka
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Toshio Miki
- Department of PhysiologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
21
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
22
|
Abstract
Despite important advances in neonatal care, rates of bronchopulmonary dysplasia (BPD) have remained persistently high. Numerous drugs and ventilator strategies are used for the prevention and treatment of BPD. Some, such as exogenous surfactant, volume targeted ventilation, caffeine, and non-invasive respiratory support, are associated with modest but important reductions in rates of BPD and long-term respiratory morbidities. Many other therapies, such as corticosteroids, diuretics, nitric oxide, bronchodilators and anti-reflux medications, are widely used despite conflicting, limited or no evidence of efficacy and safety. This paper examines the range of therapies used for the prevention or treatment of BPD. They are classified into those supported by evidence of effectiveness, and those which are widely used despite limited evidence or unclear risk to benefit ratios. Finally, the paper explores emerging therapies and approaches which aim to prevent or reduce BPD and long-term respiratory morbidity.
Collapse
|
23
|
Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, Tan GC, Wong YP. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:615508. [PMID: 33791258 PMCID: PMC8006350 DOI: 10.3389/fped.2021.615508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yee Khong
- Department of Pathology, SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Ahn SY, Park WS, Sung SI, Chang YS. Mesenchymal stem cell therapy for intractable neonatal disorders. Pediatr Neonatol 2021; 62 Suppl 1:S16-S21. [PMID: 33485822 DOI: 10.1016/j.pedneo.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has emerged as a new promising therapeutic strategy for the treatment of intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), and hypoxic-ischemic encephalopathy (HIE). In response to inflammatory and noxious environments, MSCs secrete various paracrine factors that perform several reparative functions, including exerting anti-inflammatory, anti-oxidative, anti-apoptotic, and anti-fibrotic effects, to enhance the regeneration of damaged cells and tissues. In this review, we summarize recent advances in stem cell research focusing on the use of MSCs in the prevention and treatment of newborn BPD, IVH and HIE, with particular emphasis on preclinical and clinical data.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
25
|
Berishvili E, Kaiser L, Cohen M, Berney T, Scholz H, Floisand Y, Mattsson J. Treatment of COVID-19 Pneumonia: the Case for Placenta-derived Cell Therapy. Stem Cell Rev Rep 2021; 17:63-70. [PMID: 32696426 PMCID: PMC7372209 DOI: 10.1007/s12015-020-10004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly 500'000 fatalities due to COVID-19 have been reported globally and the death toll is still rising. Most deaths are due to acute respiratory distress syndrome (ARDS), as a result of an excessive immune response and a cytokine storm elicited by severe SARS-CoV-2 lung infection, rather than by a direct cytopathic effect of the virus. In the most severe forms of the disease therapies should aim primarily at dampening the uncontrolled inflammatory/immune response responsible for most fatalities. Pharmacological agents - antiviral and anti-inflammatory molecules - have not been able so far to achieve compelling results for the control of severe COVID-19 pneumonia. Cells derived from the placenta and/or fetal membranes, in particular amniotic epithelial cells (AEC) and decidual stromal cells (DSC), have established, well-characterized, potent anti-inflammatory and immune-modulatory properties that make them attractive candidates for a cell-based therapy of COVID19 pneumonia. Placenta-derived cells are easy to procure from a perennial source and pose minimal ethical issues for their utilization. In view of the existing clinical evidence for the innocuousness and efficiency of systemic administration of DSCs or AECs in similar conditions, we advocate for the initiation of clinical trials using this strategy in the treatment of severe COVID-19 disease.
Collapse
Affiliation(s)
- Ekaterine Berishvili
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland.
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
- Cell Isolation and Transplantation Center, Centre Médical Universitaire, 1, rue Michel-Servet, CH-1211, Geneva 4, Switzerland.
| | - Laurent Kaiser
- Division of Infectious Diseases, Virology Laboratory and Geneva Centre for Emerging Viral Diseases, University of Geneva Hospitals, Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Transplantation, University of Geneva Hospitals, Geneva, Switzerland
| | - Hanne Scholz
- Department of Transplant Medicine, Department of Cellular Therapy, University of Oslo, Oslo, Norway
- Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yngvar Floisand
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jonas Mattsson
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
MSC Based Therapies to Prevent or Treat BPD-A Narrative Review on Advances and Ongoing Challenges. Int J Mol Sci 2021; 22:ijms22031138. [PMID: 33498887 PMCID: PMC7865378 DOI: 10.3390/ijms22031138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.
Collapse
|
27
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
28
|
Baker EK, Wallace EM, Davis PG, Malhotra A, Jacobs SE, Hooper SB, Lim R. A protocol for cell therapy infusion in neonates. Stem Cells Transl Med 2021; 10:773-780. [PMID: 33405397 PMCID: PMC8046110 DOI: 10.1002/sctm.20-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 01/22/2023] Open
Abstract
Cell therapies for neonatal morbidities are progressing to early phase clinical trials. However, protocols for intravenous (IV) delivery of cell therapies to infants have not been evaluated. It has been assumed the cell dose prescribed is the dose delivered. Early in our clinical trial of human amnion epithelial cells (hAECs), we observed cells settling in the syringe and IV tubing used to deliver the suspension. The effect on dose delivery was unknown. We aimed to quantify this observation and determine an optimal protocol for IV delivery of hAECs to extremely preterm infants. A standard pediatric infusion protocol was modeled in the laboratory. A syringe pump delivered the hAEC suspension over 60 minutes via a pediatric blood transfusion set (200‐μm filter and 2.2 mL IV line). The infusion protocol was varied by agitation methods, IV‐line volumes (0.2‐2.2 mL), albumin concentrations (2% vs 4%), and syringe orientations (horizontal vs vertical) to assess whether these variables influenced the dose delivered. The influence of flow rate (3‐15 mL/h) was assessed after other variables were optimized. The standard infusion protocol delivered 17.6% ± 9% of the intended hAEC dose. Increasing albumin concentration to 4%, positioning the syringe and IV line vertically, and decreasing IV‐line volume to 0.6 mL delivered 99.7% ± 13% of the intended hAEC dose. Flow rate did not affect dose delivery. Cell therapy infusion protocols must be considered. We describe the refinement of a cell infusion protocol that delivers intended cell doses and could form the basis of future neonatal cell delivery protocols.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Paediatrics, Monash University, Victoria, Australia
| | - Susan E Jacobs
- Newborn Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| |
Collapse
|
29
|
Thompson ER, Connelly C, Ali S, Sheerin NS, Wilson CH. Cell therapy during machine perfusion. Transpl Int 2020; 34:49-58. [PMID: 33131097 DOI: 10.1111/tri.13780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
There has been increasing use of organs from extended criteria or donation after circulatory death donors to meet the demands of the transplant waiting list. Over the past decade, there has been considerable progress in technologies to preserve organs prior to transplantation to improve the function of these marginal organs. This has led to the development of normothermic machine perfusion, whereby an organ is perfused with warmed, oxygenated blood and nutrients to resume normal physiological function in an isolated ex-vivo platform. With this advance in preservation comes significant opportunities to recondition, repair and regenerate organs prior to transplantation using cellular therapies. This review aims to discuss the possibilities of machine perfusion technology; highlighting the potential for organ-directed reconditioning and the future avenues for investigation in this field.
Collapse
Affiliation(s)
- Emily R Thompson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chloe Connelly
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simi Ali
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Colin H Wilson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Allogeneic administration of human umbilical cord-derived mesenchymal stem/stromal cells for bronchopulmonary dysplasia: preliminary outcomes in four Vietnamese infants. J Transl Med 2020; 18:398. [PMID: 33081796 PMCID: PMC7576694 DOI: 10.1186/s12967-020-02568-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a severe condition in premature infants that compromises lung function and necessitates oxygen support. Despite major improvements in perinatal care minimizing the devastating effects, BPD remains the most frequent complication of extreme preterm birth. Our study reports the safety of the allogeneic administration of umbilical cord-derived mesenchymal stem/stromal cells (allo-UC-MSCs) and the progression of lung development in four infants with established BPD. Methods UC tissue was collected from a healthy donor, followed by propagation at the Stem Cell Core Facility at Vinmec Research Institute of Stem Cell and Gene Technology. UC-MSC culture was conducted under xeno- and serum-free conditions. Four patients with established BPD were enrolled in this study between May 25, 2018, and December 31, 2018. All four patients received two intravenous doses of allo-UC-MSCs (1 million cells/kg patient body weight (PBW) per dose) with an intervening interval of 7 days. Safety and patient conditions were evaluated during hospitalization and at 7 days and 1, 6 and 12 months postdischarge. Results No intervention-associated severe adverse events or prespecified adverse events were observed in the four patients throughout the study period. At the time of this report, all patients had recovered from BPD and were weaned off of oxygen support. Chest X-rays and CT scans confirmed the progressive reductions in fibrosis. Conclusions Allo-UC-MSC administration is safe in preterm infants with established BPD. Trial registration This preliminary study was approved by the Vinmec International Hospital Ethics Board (approval number: 88/2019/QĐ-VMEC; retrospectively registered March 12, 2019).
Collapse
|
31
|
Morandi F, Marimpietri D, Görgens A, Gallo A, Srinivasan RC, El-Andaloussi S, Gramignoli R. Human Amnion Epithelial Cells Impair T Cell Proliferation: The Role of HLA-G and HLA-E Molecules. Cells 2020; 9:E2123. [PMID: 32961693 PMCID: PMC7563681 DOI: 10.3390/cells9092123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The immunoprivilege status characteristic of human amnion epithelial cells (hAECs) has been recently highlighted in the context of xenogenic transplantation. However, the mechanism(s) involved in such regulatory functions have been so far only partially been clarified. Here, we have analyzed the expression of HLA-Ib molecules in isolated hAEC obtained from full term placentae. Moreover, we asked whether these molecules are involved in the immunoregulatory functions of hAEC. Human amnion-derived cells expressed surface HLA-G and HLA-F at high levels, whereas the commonly expressed HLA-E molecule has been measured at a very low level or null on freshly isolated cells. HLA-Ib molecules can be expressed as membrane-bound and soluble forms, and in all hAEC batches analyzed we measured high levels of sHLA-G and sHLA-E when hAEC were maintained in culture, and such a release was time-dependent. Moreover, HLA-G was present in extracellular vesicles (EVs) released by hAEC. hAEC suppressed T cell proliferation in vitro at different hAEC:T cell ratios, as previously reported. Moreover, inhibition of T cell proliferation was partially reverted by pretreating hAEC with anti-HLA-G, anti-HLA-E and anti-β2 microglobulin, thus suggesting that HLA-G and -E molecules are involved in hAEC-mediated suppression of T cell proliferation. Finally, either large-size EV (lsEV) or small-size EV (ssEV) derived from hAEC significantly modulated T-cell proliferation. In conclusion, we have here characterized one of the mechanism(s) underlying immunomodulatory functions of hAEC, related to the expression and release of HLA-Ib molecules.
Collapse
Affiliation(s)
- Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gaslini5, 16147 Genova, Italy;
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gaslini5, 16147 Genova, Italy;
| | - Andre Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 14157 Stockholm, Sweden; (A.G.); (S.E.-A.)
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy;
| | - Raghuraman Chittor Srinivasan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Alle 8, Huddinge SE-141 83, 14157 Stockholm, Sweden;
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 14157 Stockholm, Sweden; (A.G.); (S.E.-A.)
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Alle 8, Huddinge SE-141 83, 14157 Stockholm, Sweden;
| |
Collapse
|
32
|
Baker EK, Jacobs SE, Lim R, Wallace EM, Davis PG. Cell therapy for the preterm infant: promise and practicalities. Arch Dis Child Fetal Neonatal Ed 2020; 105:563-568. [PMID: 32253200 DOI: 10.1136/archdischild-2019-317896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Recent decades have seen the rapid progress of neonatal intensive care, and the survival rates of the most preterm infants are improving. This improvement is associated with changing patterns of morbidity and new phenotypes of bronchopulmonary dysplasia and preterm brain injury are recognised. Inflammation and immaturity are known contributors to their pathogenesis. However, a new phenomenon, the exhaustion of progenitor cells is emerging as an important factor. Current therapeutic approaches do not adequately address these new mechanisms of injury. Cell therapy, that is the use of stem and stem-like cells, with its potential to both repair and prevent injury, offers a new approach to these challenging conditions. This review will examine the rationale for cell therapy in the extremely preterm infant, the preclinical and early clinical evidence to support its use in bronchopulmonary dysplasia and preterm brain injury. Finally, it will address the challenges in translating cell therapy from the laboratory to early clinical trials.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia .,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susan E Jacobs
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Srinivasan RC, Strom SC, Gramignoli R. Effects of Cryogenic Storage on Human Amnion Epithelial Cells. Cells 2020; 9:cells9071696. [PMID: 32679793 PMCID: PMC7407665 DOI: 10.3390/cells9071696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal stem cells and epithelial cells isolated from full term amnion membrane, in particular, have attracted interest over the last decade, as a promising source of multipotent cells for cellular therapies. Human amnion epithelial cells (hAEC) have been used to treat monogenetic liver disease such as maple syrup urine disease or fibrosis of the liver in preclinical studies. In most studies xeno-transplants of hAEC were conducted without providing immunosuppression to recipients, reflecting the tolerogenic properties of hAEC. For many cell types, successful cryopreservation is critical for providing a readily available, off-the-shelf product. In this study, hAEC were isolated from full-term human placenta from 14 different donors, cryopreserved using a protocol and reagents commonly adopted for epithelial cell preservation. The cells were analyzed in terms of survival, recovery, and homogeneity, profiled for surface markers characteristic of epithelial, mesenchymal, endothelial, or hematopoietic cells. There were no significant differences observed in the percentage of cells with epithelial cell markers before and after cryopreservation. The relative proportion of stromal and hematopoietic cells was significantly reduced in hAEC preparations after cryopreservation. The expression of stem cell and immunomodulatory molecules were confirmed in the final product. Since multipotent cells are readily available from full-term placenta, this novel cell source might significantly increase the number of patients eligible to receive cellular therapies for liver and other diseases.
Collapse
|
34
|
Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E. Present and Future of Bronchopulmonary Dysplasia. J Clin Med 2020; 9:jcm9051539. [PMID: 32443685 PMCID: PMC7290764 DOI: 10.3390/jcm9051539] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder among infants born extremely preterm. The pathogenesis of BPD involves multiple prenatal and postnatal mechanisms affecting the development of a very immature lung. Their combined effects alter the lung's morphogenesis, disrupt capillary gas exchange in the alveoli, and lead to the pathological and clinical features of BPD. The disorder is ultimately the result of an aberrant repair response to antenatal and postnatal injuries to the developing lungs. Neonatology has made huge advances in dealing with conditions related to prematurity, but efforts to prevent and treat BPD have so far been only partially effective. Seeing that BPD appears to have a role in the early origin of chronic obstructive pulmonary disease, its prevention is pivotal also in long-term respiratory outcome of these patients. There is currently some evidence to support the use of antenatal glucocorticoids, surfactant therapy, protective noninvasive ventilation, targeted saturations, early caffeine treatment, vitamin A, and fluid restriction, but none of the existing strategies have had any significant impact in reducing the burden of BPD. New areas of research are raising novel therapeutic prospects, however. For instance, early topical (intratracheal or nebulized) steroids seem promising: they might help to limit BPD development without the side effects of systemic steroids. Evidence in favor of stem cell therapy has emerged from several preclinical trials, and from a couple of studies in humans. Mesenchymal stromal/stem cells (MSCs) have revealed a reparatory capability, preventing the progression of BPD in animal models. Administering MSC-conditioned media containing extracellular vesicles (EVs) have also demonstrated a preventive action, without the potential risks associated with unwanted engraftment or the adverse effects of administering cells. In this paper, we explore these emerging treatments and take a look at the revolutionary changes in BPD and neonatology on the horizon.
Collapse
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Maurizio Muraca
- Institute of Pediatric Research “Città della Speranza”, Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
- Correspondence: ; Tel.: +39-049-821-3560; Fax: +39-049-821-3502
| |
Collapse
|
35
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020; 9:285-288. [PMID: 32077269 PMCID: PMC7031629 DOI: 10.1002/sctm.20-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 11/11/2022] Open
|
36
|
El-Saie A, Shivanna B. Novel Strategies to Reduce Pulmonary Hypertension in Infants With Bronchopulmonary Dysplasia. Front Pediatr 2020; 8:201. [PMID: 32457857 PMCID: PMC7225259 DOI: 10.3389/fped.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/02/2020] [Indexed: 01/10/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a developmental lung disorder of preterm infants primarily caused by the failure of host defense mechanisms to prevent tissue injury and facilitate repair. This disorder is the most common complication of premature birth, and its incidence remains unchanged over the past few decades. Additionally, BPD increases long-term cardiopulmonary and neurodevelopmental morbidities of preterm infants. Pulmonary hypertension (PH) is a common morbidity of BPD. Importantly, the presence of PH increases both the short- and long-term morbidities and mortality in BPD infants. Further, there are no curative therapies for this complex disease. Besides providing an overview of the pathogenesis and diagnosis of PH associated with BPD, we have attempted to comprehensively review and summarize the current literature on the interventions to prevent and/or mitigate BPD and PH in preclinical studies. Our goal was to provide insight into the therapies that have a high translational potential to meaningfully manage BPD patients with PH.
Collapse
Affiliation(s)
- Ahmed El-Saie
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Binoy Shivanna
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
37
|
Malhotra A, Lim R, Mockler JC, Wallace EM. Two-year outcomes of infants enrolled in the first-in-human study of amnion cells for bronchopulmonary dysplasia. Stem Cells Transl Med 2019; 9:289-294. [PMID: 31774236 PMCID: PMC7031636 DOI: 10.1002/sctm.19-0251] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
We previously reported on the immediate safety and neonatal outcomes of six premature infants with severe bronchopulmonary dysplasia (BPD) who were administered human amnion epithelial cells (hAECs). One infant died in the neonatal period due to unrelated causes. In this study, we aimed to assess the long‐term safety and follow‐up outcomes of the five surviving infants until 2 years corrected age (CA). hAECs were administered intravenously at a dose of 1 × 106 cells per kilogram after 36 weeks postconceptional age in infants with established BPD. Study follow‐up consisted of assessment of any adverse events, growth, and respiratory, cardiac, and neurodevelopmental outcomes over four time points (6, 12, 18, and 24 months CA). Investigations included chest x‐rays, cranial and abdominal ultrasounds, and echocardiograms at regular intervals as well as a magnetic resonance imaging (MRI) brain at 2 years CA. All five infants were alive at 2 years CA. Median time to wean off oxygen was 24 (10‐36) months. Two infants had pulmonary hypertension, which resolved by 2 years of age. Four infants were rehospitalized briefly for viral or bacterial infections during the 2 years. MRI brain findings included normal (n = 1), and mild to moderate white matter loss (n = 2). Neurodisabilities diagnosed included hemiplegic cerebral palsy (n = 1), global developmental delay (n = 3), and severe hearing loss (n = 3). No evidence of tumor formation was noted on physical examinations or on any imaging. There were no long‐term adverse events observed that could be attributed to hAEC administration. We observed long‐term effects of extreme prematurity and severe BPD in the cohort.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Clayton, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.,Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Joanne C Mockler
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|