1
|
González-Parra G, Mahmud MS, Kadelka C. Learning from the COVID-19 pandemic: A systematic review of mathematical vaccine prioritization models. Infect Dis Model 2024; 9:1057-1080. [PMID: 38988830 PMCID: PMC11233876 DOI: 10.1016/j.idm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 07/12/2024] Open
Abstract
As the world becomes ever more connected, the chance of pandemics increases as well. The recent COVID-19 pandemic and the concurrent global mass vaccine roll-out provides an ideal setting to learn from and refine our understanding of infectious disease models for better future preparedness. In this review, we systematically analyze and categorize mathematical models that have been developed to design optimal vaccine prioritization strategies of an initially limited vaccine. As older individuals are disproportionately affected by COVID-19, the focus is on models that take age explicitly into account. The lower mobility and activity level of older individuals gives rise to non-trivial trade-offs. Secondary research questions concern the optimal time interval between vaccine doses and spatial vaccine distribution. This review showcases the effect of various modeling assumptions on model outcomes. A solid understanding of these relationships yields better infectious disease models and thus public health decisions during the next pandemic.
Collapse
Affiliation(s)
- Gilberto González-Parra
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain
- Department of Mathematics, New Mexico Tech, 801 Leroy Place, Socorro, 87801, NM, USA
| | - Md Shahriar Mahmud
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| | - Claus Kadelka
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| |
Collapse
|
2
|
Espinoza B, Saad-Roy CM, Grenfell BT, Levin SA, Marathe M. Adaptive human behaviour modulates the impact of immune life history and vaccination on long-term epidemic dynamics. Proc Biol Sci 2024; 291:20241772. [PMID: 39471851 PMCID: PMC11521615 DOI: 10.1098/rspb.2024.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 11/01/2024] Open
Abstract
The multiple immunity responses exhibited in the population and co-circulating variants documented during pandemics show a high potential to generate diverse long-term epidemiological scenarios. Transmission variability, immune uncertainties and human behaviour are crucial features for the predictability and implementation of effective mitigation strategies. Nonetheless, the effects of individual health incentives on disease dynamics are not well understood. We use a behavioural-immuno-epidemiological model to study the joint evolution of human behaviour and epidemic dynamics for different immunity scenarios. Our results reveal a trade-off between the individuals' immunity levels and the behavioural responses produced. We find that adaptive human behaviour can avoid dynamical resonance by avoiding large outbreaks, producing subsequent uniform outbreaks. Our forward-looking behaviour model shows an optimal planning horizon that minimizes the epidemic burden by balancing the individual risk-benefit trade-off. We find that adaptive human behaviour can compensate for differential immunity levels, equalizing the epidemic dynamics for scenarios with diverse underlying immunity landscapes. Our model can adequately capture complex empirical behavioural dynamics observed during pandemics. We tested our model for different US states during the COVID-19 pandemic. Finally, we explored extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, prosocial attitudes and pandemic fatigue.
Collapse
Affiliation(s)
- Baltazar Espinoza
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Chadi M. Saad-Roy
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Madhav Marathe
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Gonzalez-Parra G, Mahmud MS, Kadelka C. Learning from the COVID-19 pandemic: a systematic review of mathematical vaccine prioritization models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303726. [PMID: 38496570 PMCID: PMC10942533 DOI: 10.1101/2024.03.04.24303726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
As the world becomes ever more connected, the chance of pandemics increases as well. The recent COVID-19 pandemic and the concurrent global mass vaccine roll-out provides an ideal setting to learn from and refine our understanding of infectious disease models for better future preparedness. In this review, we systematically analyze and categorize mathematical models that have been developed to design optimal vaccine prioritization strategies of an initially limited vaccine. As older individuals are disproportionately affected by COVID-19, the focus is on models that take age explicitly into account. The lower mobility and activity level of older individuals gives rise to non-trivial trade-offs. Secondary research questions concern the optimal time interval between vaccine doses and spatial vaccine distribution. This review showcases the effect of various modeling assumptions on model outcomes. A solid understanding of these relationships yields better infectious disease models and thus public health decisions during the next pandemic.
Collapse
Affiliation(s)
- Gilberto Gonzalez-Parra
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain
- Department of Mathematics, New Mexico Tech, 801 Leroy Place, Socorro, 87801, NM, USA
| | - Md Shahriar Mahmud
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| | - Claus Kadelka
- Department of Mathematics, Iowa State University, 411 Morrill Rd, Ames, 50011, IA, USA
| |
Collapse
|
4
|
Lim TY, Xu R, Ruktanonchai N, Saucedo O, Childs LM, Jalali MS, Rahmandad H, Ghaffarzadegan N. Why Similar Policies Resulted In Different COVID-19 Outcomes: How Responsiveness And Culture Influenced Mortality Rates. Health Aff (Millwood) 2023; 42:1637-1646. [PMID: 38048504 DOI: 10.1377/hlthaff.2023.00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
In the first two years of the COVID-19 pandemic, per capita mortality varied by more than a hundredfold across countries, despite most implementing similar nonpharmaceutical interventions. Factors such as policy stringency, gross domestic product, and age distribution explain only a small fraction of mortality variation. To address this puzzle, we built on a previously validated pandemic model in which perceived risk altered societal responses affecting SARS-CoV-2 transmission. Using data from more than 100 countries, we found that a key factor explaining heterogeneous death rates was not the policy responses themselves but rather variation in responsiveness. Responsiveness measures how sensitive communities are to evolving mortality risks and how readily they adopt nonpharmaceutical interventions in response, to curb transmission. We further found that responsiveness correlated with two cultural constructs across countries: uncertainty avoidance and power distance. Our findings show that more responsive adoption of similar policies saves many lives, with important implications for the design and implementation of responses to future outbreaks.
Collapse
Affiliation(s)
- Tse Yang Lim
- Tse Yang Lim, Harvard University, Boston, Massachusetts
| | - Ran Xu
- Ran Xu, University of Connecticut, Storrs, Connecticut
| | | | - Omar Saucedo
- Omar Saucedo, Virginia Tech, Blacksburg, Virginia
| | | | | | - Hazhir Rahmandad
- Hazhir Rahmandad, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|
5
|
Rahmandad H, Xu R, Ghaffarzadegan N. A missing behavioural feedback in COVID-19 models is the key to several puzzles. BMJ Glob Health 2022; 7:bmjgh-2022-010463. [PMID: 36283733 PMCID: PMC9606737 DOI: 10.1136/bmjgh-2022-010463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Ran Xu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Navid Ghaffarzadegan
- Department of Industrial and Systems Engineering, Virginia Tech, Falls Church, Virginia, USA
| |
Collapse
|