1
|
Kozisek J, Hrncirova J, Slouf M, Sloufova I. Plasmon-driven substitution of 4-mercaptophenylboronic acid to 4-nitrothiophenol monitored by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124523. [PMID: 38820811 DOI: 10.1016/j.saa.2024.124523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Plasmon-driven reactions on plasmonic nanoparticles (NPs) occur under significantly different conditions from those of classical organic synthesis and provide a promising pathway for enhancing the efficiency of various chemical processes. However, these reactions can also have undesirable effects, such as 4-mercaptophenylboronic acid (MPBA) deboronation. MPBA chemisorbs well to Ag NPs through its thiol group and can subsequently bind to diols, enabling the detection of various biological structures by surface-enhanced Raman scattering (SERS), but not upon its deboronation. To avoid this reaction, we investigated the experimental conditions of MPBA deboronation on Ag NPs by SERS. Our results showed that the level of deboronation strongly depends on both the morphology of the system and the excitation laser wavelength and power. In addition, we detected not only the expected products, namely thiophenol and biphenyl-4,4-dithiol, but also 4-nitrothiophenol (NTP). The crucial reagent for NTP formation was an oxidation product of hydroxylamine hydrochloride, the reduction agent used in Ag NP synthesis. Ultimately, this reaction was replicated by adding NaNO2 to the system, and its progress was monitored as a function of the laser power, thereby identifying a new reaction of plasmon-driven -B(OH)2 substitution for -NO2.
Collapse
Affiliation(s)
- Jan Kozisek
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Jana Hrncirova
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ivana Sloufova
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
2
|
Shen J, Chen G, Yang Z, Wu Y, Ma C, Li L, Yang T, Gu J, Gao H, Zhu C. Boric acid-functionalized silver nanoparticles as SERS substrate for sensitive and rapid detection of fructose in artificial urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122179. [PMID: 36463624 DOI: 10.1016/j.saa.2022.122179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The accurate detection of fructose in human urine can help prevent and screen for diseases such as fructokinase deficiency and hereditary fructose intolerance. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with selectivity and high sensitivity, which has been widely applied to the detection of targets with complex backgrounds. In this work, 4-mercaptophenylboronic acid (4-MPBA) was modified on the surface of silver nanoparticles (AgNPs) under mild conditions to obtain a boronic acid-functionalized SERS substrate for the detection of fructose in artificial urine. The detection mechanism was based on the deboronization reaction of 4-MPBA on the surface of AgNPs, which was induced by fructose, and the Raman signal of the generated thiophenol (TP) molecules was significantly enhanced by the silver nanoparticles, with a linear increase in SERS peak intensity at 1570 cm-1. We achieved the detection limits of 0.084 µmol/L in water and 0.535 µmol/L in urine by this method. The relative standard deviation (RSD) in the recovery experiments of urine ranged from 1.01 % to 2.22 %, and the whole detection time was less than 10 min, which indicated that this method is highly reliable for fructose detection and has a good prospect in bioassay and clinical medicine.
Collapse
Affiliation(s)
- Jialu Shen
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Zichen Yang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China; School of Internet of Things Engineering, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China
| | - Yamin Wu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Lei Li
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Taiqun Yang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Jiao Gu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Hui Gao
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Chun Zhu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China.
| |
Collapse
|
3
|
Du W, Yin C, Huang H, Ge X. Vinyl‐functionalized polyborosiloxane for improving mechanical and flame‐retardancy performances of silicone rubber foam composites. POLYM INT 2021. [DOI: 10.1002/pi.6292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Weining Du
- Sichuan Fire Research Institute of Ministry of Emergency Management Chengdu China
| | - Chaolu Yin
- Sichuan Fire Research Institute of Ministry of Emergency Management Chengdu China
| | - Hao Huang
- Sichuan Fire Research Institute of Ministry of Emergency Management Chengdu China
| | - Xinguo Ge
- Sichuan Fire Research Institute of Ministry of Emergency Management Chengdu China
| |
Collapse
|
4
|
Glucose Detection of 4-Mercaptophenylboronic Acid-Immobilized Gold-Silver Core-Shell Assembled Silica Nanostructure by Surface Enhanced Raman Scattering. NANOMATERIALS 2021; 11:nano11040948. [PMID: 33917868 PMCID: PMC8068217 DOI: 10.3390/nano11040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022]
Abstract
The importance of glucose in many biological processes continues to garner increasing research interest in the design and development of efficient biotechnology for the sensitive and selective monitoring of glucose. Here we report on a surface-enhanced Raman scattering (SERS) detection of 4-mercaptophenyl boronic acid (4-MPBA)-immobilized gold-silver core-shell assembled silica nanostructure (SiO2@Au@Ag@4-MPBA) for quantitative, selective detection of glucose in physiologically relevant concentration. This work confirmed that 4-MPBA converted to 4-mercaptophenol (4-MPhOH) in the presence of H2O2. In addition, a calibration curve for H2O2 detection of 0.3 µg/mL was successfully detected in the range of 1.0 to 1000 µg/mL. Moreover, the SiO2@Au@Ag@4-MPBA for glucose detection was developed in the presence of glucose oxidase (GOx) at the optimized condition of 100 µg/mL GOx with 1-h incubation time using 20 µg/mL SiO2@Au@Ag@4-MPBA and measuring Raman signal at 67 µg/mL SiO2@Au@Ag. At the optimized condition, the calibration curve in the range of 0.5 to 8.0 mM was successfully developed with an LOD of 0.15 mM. Based on those strategies, the SERS detection of glucose can be achieved in the physiologically relevant concentration range and opened a great promise to develop a SERS-based biosensor for a variety of biomedicine applications.
Collapse
|
6
|
Xie D, Zhu WF, Cheng H, Yao ZY, Li M, Zhao YL. An antibody-free assay for simultaneous capture and detection of glycoproteins by surface enhanced Raman spectroscopy. Phys Chem Chem Phys 2018; 20:8881-8886. [DOI: 10.1039/c7cp08478a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A single-step reaction, antibody-free assay for simultaneous capture and detection of glycoproteins by SERS spectroscopy.
Collapse
Affiliation(s)
- D. Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics
- Chinese Academy of Sciences 19B
- Beijing 100049
- China
- Institute of Physical Science and Information Technology
| | - W. F. Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics
- Chinese Academy of Sciences 19B
- Beijing 100049
- China
| | - H. Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics
- Chinese Academy of Sciences 19B
- Beijing 100049
- China
| | - Z. Y. Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics
- Chinese Academy of Sciences 19B
- Beijing 100049
- China
| | - M. Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics
- Chinese Academy of Sciences 19B
- Beijing 100049
- China
| | - Y. L. Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety Institute of High Energy Physics
- Chinese Academy of Sciences 19B
- Beijing 100049
- China
- CAS Center for Excellence in Nanoscience
| |
Collapse
|