1
|
Parsons SK, Rodday AM, Upshaw JN, Scharman CD, Cui Z, Cao Y, Tiger YKR, Maurer MJ, Evens AM. Harnessing multi-source data for individualized care in Hodgkin Lymphoma. Blood Rev 2024; 65:101170. [PMID: 38290895 PMCID: PMC11382606 DOI: 10.1016/j.blre.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Hodgkin lymphoma is a rare, but highly curative form of cancer, primarily afflicting adolescents and young adults. Despite multiple seminal trials over the past twenty years, there is no single consensus-based treatment approach beyond use of multi-agency chemotherapy with curative intent. The use of radiation continues to be debated in early-stage disease, as part of combined modality treatment, as well as in salvage, as an important form of consolidation. While short-term disease outcomes have varied little across these different approaches across both early and advanced stage disease, the potential risk of severe, longer-term risk has varied considerably. Over the past decade novel therapeutics have been employed in the retrieval setting in preparation to and as consolidation after autologous stem cell transplant. More recently, these novel therapeutics have moved to the frontline setting, initially compared to standard-of-care treatment and later in a direct head-to-head comparison combined with multi-agent chemotherapy. In 2018, we established the HoLISTIC Consortium, bringing together disease and methods experts to develop clinical decision models based on individual patient data to guide providers, patients, and caregivers in decision-making. In this review, we detail the steps we followed to create the master database of individual patient data from patients treated over the past 20 years, using principles of data science. We then describe different methodological approaches we are taking to clinical decision making, beginning with clinical prediction tools at the time of diagnosis, to multi-state models, incorporating treatments and their response. Finally, we describe how simulation modeling can be used to estimate risks of late effects, based on cumulative exposure from frontline and salvage treatment. The resultant database and tools employed are dynamic with the expectation that they will be updated as better and more complete information becomes available.
Collapse
Affiliation(s)
- Susan K Parsons
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States of America; Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, United States of America.
| | - Angie Mae Rodday
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States of America
| | - Jenica N Upshaw
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States of America; The CardioVascular Center and Advanced Heart Failure Program, Tufts Medical Center, Boston, MA, United States of America
| | | | - Zhu Cui
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States of America; Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, United States of America
| | - Yenong Cao
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States of America; Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, United States of America
| | - Yun Kyoung Ryu Tiger
- Division of Blood Disorders, Rutgers Cancer Institute New Jersey, New Brunswick, NJ, United States of America
| | - Matthew J Maurer
- Division of Clinical Trials and Biostatistics and Division of Hematology, Mayo Clinic, Rochester, MN, United States of America
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
2
|
Veličković VM, Spelman T, Clark M, Probst S, Armstrong DG, Steyerberg E. Individualized Risk Prediction for Improved Chronic Wound Management. Adv Wound Care (New Rochelle) 2023; 12:387-398. [PMID: 36070447 PMCID: PMC10125399 DOI: 10.1089/wound.2022.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Significance: Chronic wounds are associated with significant morbidity, marked loss of quality of life, and considerable economic burden. Evidence-based risk prediction to guide improved wound prevention and treatment is limited by the complexity in their etiology, clinical underreporting, and a lack of studies using large high-quality datasets. Recent Advancements: The objective of this review is to summarize key components and challenges in the development of personalized risk prediction tools for both prevention and management of chronic wounds, while highlighting several innovations in the development of better risk stratification. Critical Issues: Regression-based risk prediction approaches remain important for assessment of prognosis and risk stratification in chronic wound management. Advances in statistical computing have boosted the development of several promising machine learning (ML) and other semiautomated classification tools. These methods may be better placed to handle large number of wound healing risk factors from large datasets, potentially resulting in better risk prediction when combined with conventional methods and clinical experience and expertise. Future Directions: Where the number of predictors is large and heterogenous, the correlations between various risk factors complex, and very large data sets are available, ML may prove a powerful adjuvant for risk stratifying patients predisposed to chronic wounds. Conventional regression-based approaches remain important, particularly where the number of predictors is relatively small. Translating estimated risk derived from ML algorithms into practical prediction tools for use in clinical practice remains challenging.
Collapse
Affiliation(s)
- Vladica M. Veličković
- HARTMANN GROUP, Heidenheim, Germany
- Institute of Public Health, Medical Decision Making and HTA, UMIT, Hall in Tirol, Austria
| | - Tim Spelman
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Burnet Institute, Melbourne, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Clark
- Welsh Wound Innovation Centre, Pontyclun, United Kingdom
- School of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Sebastian Probst
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts, Geneva, Western Switzerland
- Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
- Care Directorate, University Hospital Geneva, Geneva, Switzerland
| | - David G. Armstrong
- Southwestern Academic Limb Salvage Alliance (SALSA), Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | | |
Collapse
|