1
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
2
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
3
|
Cruz-Hernández AE, Colín-García M, Ortega-Gutiérrez F, Mateo-Martí E. Komatiites as Complex Adsorption Surfaces for Amino Acids in Prebiotic Environments, a Prebiotic Chemistry Essay. Life (Basel) 2022; 12:1788. [PMID: 36362942 PMCID: PMC9696357 DOI: 10.3390/life12111788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/15/2023] Open
Abstract
Komatiites represent the oldest known terrestrial rocks, and their composition has been cataloged as the closest to that of the first terrestrial crust after the cooling of the magma ocean. These rocks could have been present in multiple environments on the early Earth and served as concentrators of organic molecules. In this study, the adsorption of five amino acids (glycine, lysine, histidine, arginine, and aspartic acid) on a natural komatiite, a simulated komatiite, and the minerals olivine, pyroxene, and plagioclase were analyzed under three different pH values: acid pH (5.5), natural pH of the aqueous solution of each amino acid and alkaline pH (11). Adsorption experiments were performed in solid-liquid suspensions and organic molecules were analyzed by spectrophotometry. The main objective of this essay was to determine if the complex surfaces could have participated as concentrators of amino acids in scenarios of the primitive Earth and if the adsorption responds to the change of charge of the molecules. The results showed that komatiite is capable of adsorbing amino acids in different amounts depending on the experimental conditions. In total, 75 systems were analyzed that show different adsorptions, which implies that different interactions are involved, particularly in relation to the type of amino acid, the type of solid material and the conditions of the medium.
Collapse
Affiliation(s)
- Abigail E. Cruz-Hernández
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Eva Mateo-Martí
- Centro de Astrobiología (CAB) CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
4
|
Villafañe-Barajas SA, Ruiz-Bermejo M, Rayo-Pizarroso P, Gálvez-Martínez S, Mateo-Martí E, Colín-García M. A Lizardite-HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies. Life (Basel) 2021; 11:life11070661. [PMID: 34357033 PMCID: PMC8305185 DOI: 10.3390/life11070661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogen cyanide, HCN, is considered a fundamental molecule in chemical evolution. The named HCN polymers have been suggested as precursors of important bioorganics. Some novel researches have focused on the role of mineral surfaces in the hydrolysis and/or polymerization of cyanide species, but until now, their role has been unclear. Understanding the role of minerals in chemical evolution processes is crucial because minerals undoubtedly interacted with the organic molecules formed on the early Earth by different process. Therefore, we simulated the probable interactions between HCN and a serpentinite-hosted alkaline hydrothermal system. We studied the effect of serpentinite during the thermolysis of HCN at basic conditions (i.e., HCN 0.15 M, 50 h, 100 °C, pH > 10). The HCN-derived thermal polymer and supernatant formed after treatment were analyzed by several complementary analytical techniques. The results obtained suggest that: (I) the mineral surfaces can act as mediators in the mechanisms of organic molecule production such as the polymerization of HCN; (II) the thermal and physicochemical properties of the HCN polymer produced are affected by the presence of the mineral surface; and (III) serpentinite seems to inhibit the formation of bioorganic molecules compared with the control (without mineral).
Collapse
Affiliation(s)
- Saúl A. Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Marta Ruiz-Bermejo
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
- Correspondence: ; Tel.: +34-915206458; Fax: +34-915206410
| | - Pedro Rayo-Pizarroso
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
| | - Santos Gálvez-Martínez
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
| | - Eva Mateo-Martí
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra, Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (P.R.-P.); (S.G.-M.); (E.M.-M.)
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
5
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
6
|
Colombet J, Fuster M, Billard H, Sime-Ngando T. Femtoplankton: What's New? Viruses 2020; 12:E881. [PMID: 32806713 PMCID: PMC7472349 DOI: 10.3390/v12080881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Since the discovery of high abundances of virus-like particles in aquatic environment, emergence of new analytical methods in microscopy and molecular biology has allowed significant advances in the characterization of the femtoplankton, i.e., floating entities filterable on a 0.2 µm pore size filter. The successive evidences in the last decade (2010-2020) of high abundances of biomimetic mineral-organic particles, extracellular vesicles, CPR/DPANN (Candidate phyla radiation/Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota), and very recently of aster-like nanoparticles (ALNs), show that aquatic ecosystems form a huge reservoir of unidentified and overlooked femtoplankton entities. The purpose of this review is to highlight this unsuspected diversity. Herein, we focus on the origin, composition and the ecological potentials of organic femtoplankton entities. Particular emphasis is given to the most recently discovered ALNs. All the entities described are displayed in an evolutionary context along a continuum of complexity, from minerals to cell-like living entities.
Collapse
Affiliation(s)
- Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.F.); (H.B.); (T.S.-N.)
| | | | | | | |
Collapse
|
7
|
Madsen MM, Jensen F, Thøgersen J. The primary photo-dissociation dynamics of amino acids in aqueous solution: breaking the Cα-bond. Phys Chem Chem Phys 2020; 22:2307-2318. [DOI: 10.1039/c9cp05836b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photo-excitation of aqueous amino acids at 200 nm breaks the Cα-bond.
Collapse
Affiliation(s)
| | - Frank Jensen
- Dept. of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Jan Thøgersen
- Dept. of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| |
Collapse
|
8
|
|
9
|
Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation. Life (Basel) 2018; 8:life8010007. [PMID: 29510574 PMCID: PMC5871939 DOI: 10.3390/life8010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/25/2018] [Accepted: 02/28/2018] [Indexed: 01/19/2023] Open
Abstract
A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry.
Collapse
|
10
|
Westall F, Hickman-Lewis K, Hinman N, Gautret P, Campbell KA, Bréhéret JG, Foucher F, Hubert A, Sorieul S, Dass AV, Kee TP, Georgelin T, Brack A. A Hydrothermal-Sedimentary Context for the Origin of Life. ASTROBIOLOGY 2018; 18:259-293. [PMID: 29489386 PMCID: PMC5867533 DOI: 10.1089/ast.2017.1680] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5-4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5-3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life-Hadean environment-Mineral surface reactions-Hydrothermal fluids-Archean volcanic sediments. Astrobiology 18, 259-293.
Collapse
Affiliation(s)
- F Westall
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - K Hickman-Lewis
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
- 2 Dipartmento di Scienze biologiche, geologiche e ambientale, Università di Bologna , Bologna, Italy
| | - N Hinman
- 3 Geosciences, University of Montana , Missoula, Montana, USA
| | - P Gautret
- 4 University of Orléans , ISTO, UMR 7327, Orléans, France, and CNRS, ISTO, UMR 7327, Orléans, France, and BRGM, ISTO, UMR 7327, Orléans, France
| | - K A Campbell
- 5 School of Environment, The University of Auckland , Auckland, New Zealand
| | - J G Bréhéret
- 6 GéoHydrosytèmes Continentaux, Faculté des Sciences et Techniques, Université François-Rabelais de Tours , Tours, France
| | - F Foucher
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - A Hubert
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - S Sorieul
- 7 University of Bordeaux , CNRS, IN2P3, CENBG, UMR5797, Gradignan, France
| | - A V Dass
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| | - T P Kee
- 8 School of Chemistry, University of Leeds , Leeds, UK
| | - T Georgelin
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
- 9 Sorbonne Universités , UPMC Paris 06, CNRS UMR 7197, Laboratoire de Réactivité de Surface, Paris, France
| | - A Brack
- 1 CNRS-Centre de Biophysique Moléculaire , Orléans, France
| |
Collapse
|
11
|
Chemical Transformations in Proto-Cytoplasmic Media. Phosphorus Coupling in the Silica Hydrogel Phase. Life (Basel) 2017; 7:life7040045. [PMID: 29156594 PMCID: PMC5745558 DOI: 10.3390/life7040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
It has been proposed that prebiotic chemical studies on the emergence of primitive life would be most relevant when performed in a hydrogel, rather than an aqueous, environment. In this paper we describe the ambient temperature coupling of phosphorus oxyacids [Pi] mediated by Fe(II) under aerobic conditions within a silica hydrogel (SHG) environment. We have chosen to examine SHGs as they have considerable geological precedence as key phases in silicification en route to rock formation. Following a description of the preparation and characterization studies on our SHG formulations, coupling experiments between Pi species are described across multiple permutations of (i) Pi compound; (ii) gel formulation; (iii) metal salt additive; and (iv) pH-modifying agent. The results suggest that successful Pi coupling, indicated by observation of pyrophosphate [PPi(V)] via 31P-NMR spectroscopy, takes place when the following components are present: (i) a mixture of mixture of Pi(III) and Pi(V) or pure PPi(III– V); (ii) Fe(II); (iii) acetic or formic acid (not hydrochloric acid); (iv) aerobic conditions or the presence of H2O2 as an oxidant; and (v) the presence of a gel system. On the basis of these, and aqueous control reactions, we suggest mechanistic possibilities.
Collapse
|
12
|
Foucher F, Hickman-Lewis K, Westall F, Brack A. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach. Life (Basel) 2017; 7:life7040040. [PMID: 29072614 PMCID: PMC5745553 DOI: 10.3390/life7040040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System.
Collapse
Affiliation(s)
- Frédéric Foucher
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Rue Charles Sadron, CS80054, 45071 Orléans CEDEX, France.
| | - Keyron Hickman-Lewis
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Rue Charles Sadron, CS80054, 45071 Orléans CEDEX, France.
| | - Frances Westall
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Rue Charles Sadron, CS80054, 45071 Orléans CEDEX, France.
| | - André Brack
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Rue Charles Sadron, CS80054, 45071 Orléans CEDEX, France.
| |
Collapse
|