1
|
Pandurangan S, Easwaramoorthi S, Ayyadurai N. Engineering proteins with catechol chemistry for biotechnological applications. Crit Rev Biotechnol 2025; 45:606-624. [PMID: 39198031 DOI: 10.1080/07388551.2024.2387165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2024]
Abstract
Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions via a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Department of Inorganic and Physical Chemistry, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
2
|
Boopathi AA, Navya PV, Mohan I, Ayyadurai N, Karuppusamy M, Easwaramoorthi S, Roy A, Narasimhaswamy T, Sampath S. Hierarchical Self-Assembly and Aggregation-Induced Emission Enhancement in Tetrabenzofluorene-Based Red Emitting Molecules. Chem Asian J 2024; 19:e202400639. [PMID: 39008416 DOI: 10.1002/asia.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The newly synthesized chiral active [5]helicene-like tetrabenzofluorene (TBF) based highly red-emitting molecules exhibit flower-like self-assembly. These molecules display photophysical and structural properties such as intramolecular charge transfer, dual state emission, large fluorescence quantum yield, and solvatochromism. In TBFID, the indandione functional group attached on both sides as the terminal group offers an A-D-A push-pull effect and acts as a strong acceptor to cause more redshift in solution as well as in solid state as compared to TBFPA (TBF with benzaldehyde functional group in terminal position). The self-assembly studies of TBFID demonstrate the aggregation-induced emission enhancement (AIEE) attributed to the restriction of intramolecular rotation at the aggregated state. Furthermore, TBFID shows high quantum yield and intense red emission, making the molecule fit for organic light-emitting diodes (OLED) and bioimaging applications.
Collapse
Affiliation(s)
- A A Boopathi
- Polymer Science & Technology, CSIR- Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - P V Navya
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Indhu Mohan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Masiyappan Karuppusamy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Inorganic and Physical Chemistry Lab, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Arun Roy
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar P. O., Bangalore, 560080, India
| | - T Narasimhaswamy
- Polymer Science & Technology, CSIR- Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Srinivasan Sampath
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, 610005, India
| |
Collapse
|
3
|
Bao M, Łuczak K, Chaładaj W, Baird M, Gryko D, Doyle MP. Photo-cycloaddition reactions of vinyldiazo compounds. Nat Commun 2024; 15:4574. [PMID: 38811537 PMCID: PMC11137122 DOI: 10.1038/s41467-024-48274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Heterocyclic rings are important structural scaffolds encountered in both natural and synthetic compounds, and their biological activity often depends on these motifs. They are predominantly accessible via cycloaddition reactions, realized by either thermal, photochemical, or catalytic means. Various starting materials are utilized for this purpose, and, among them, diazo compounds are often encountered, especially vinyldiazo compounds that give access to donor-acceptor cyclopropenes which engage in [2+n] cycloaddition reactions. Herein, we describe the development of photochemical processes that produce diverse heterocyclic scaffolds from multisubstituted oximidovinyldiazo compounds. High chemoselectivity, good functional group tolerance, and excellent scalability characterize this methodology, thus predisposing it for broader applications. Experimental and computational studies reveal that under light irradiation these diazo reagents selectively transform into cyclopropenes which engage in cycloaddition reactions with various dipoles, while under thermal conditions the formation of pyrazole from vinyldiazo compounds is favored.
Collapse
Affiliation(s)
- Ming Bao
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Klaudia Łuczak
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Marriah Baird
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
4
|
Aarthy M, George A, Ayyadurai N. Beyond protein tagging: Rewiring the genetic code of fluorescent proteins - A review. Int J Biol Macromol 2021; 191:840-851. [PMID: 34560154 DOI: 10.1016/j.ijbiomac.2021.09.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022]
Abstract
Fluorescent proteins (FP) are an integral part of modern biology due to its diverse biochemical and photophysical properties. The boundaries of FP have been extended through conventional mutagenesis and directed evolution approaches. Engineering of FP based on the standard genetic code consisting of 20 amino acids with limited functional groups restrict its diversification. Degeneracy of genetic code has helped in covering this substantial gap through genetic code engineering, wherein introduction of unnatural amino acid (UAA) analogues resulted in a collection of FP with varying properties. This review features the work carried till date in the area of FP incorporated with UAAs and explores strategies employed for incorporation, impact of UAAs in chromophore and surrounding residues and changes in inherent properties of FP. The long-standing association of FP as a tool for high throughput screening of orthogonal aaRS/tRNA pairs used in site specific incorporation of UAAs is expounded. Insertion of UAAs in FP has enabled their use in contemporary fields such as biophotovoltaics, bioremediation, biosensors, biomaterials and imaging of acidic vesicles. Thus, expansion of genetic code of FP is envisaged to rejig the existing spectra of colors and future research initiative in this direction is expected to glow brighter and brighter.
Collapse
Affiliation(s)
- Mayilvahanan Aarthy
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Augustine George
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Niraikulam Ayyadurai
- Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.
| |
Collapse
|
5
|
George A, Indhu M, Ashokraj S, Shanmugam G, Ganesan P, Kamini NR, Ayyadurai N. Genetically encoded dihydroxyphenylalanine coupled with tyrosinase for strain promoted labeling. Bioorg Med Chem 2021; 50:116460. [PMID: 34757293 DOI: 10.1016/j.bmc.2021.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Protein modifications through genetic code engineering have a remarkable impact on macromolecule engineering, protein translocation, protein-protein interaction, and cell biology. We used the newly developed molecular biology approach, genetic code engineering, for fine-tuning of proteins for biological availability. Here, we have introduced 3, 4-dihydroxy-l-phenylalanine in recombinant proteins by selective pressure incorporation method for protein-based cell labeling applications. The congener proteins treated with tyrosinase convert 3, 4-dihydroxy-l-phenylalanine to dopaquinone for strain-promoted click chemistry. Initially, the single-step Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-quinone Cycloaddition was studied using tyrosinase catalyzed congener protein and optimized the temporally controlled conjugation with (1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethanol. Then, the feasibility of tyrosinase-treated congener annexin A5 with easily reactive quinone functional moiety was conjugated with fluorescent tag dibenzocyclooctyne-PEG4-TAMRA for labeling of apoptotic cells. Thus, the congener proteins-based products demonstrate selective cell labeling and apoptosis detection in EA.hy926 cells even after the protein modifications. Hence, genetic code engineering can be coupled with click chemistry to develop various protein-based fluorescent labels.
Collapse
Affiliation(s)
- Augustine George
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Mohan Indhu
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sundarapandian Ashokraj
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ganesh Shanmugam
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Division of Organic and Bio-Organic Chemistry, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Ponesakki Ganesan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Pandurangan S, Murugesan P, Ramudu KN, Krishnaswamy B, Ayyadurai N. Enhanced Cellular Uptake and Sustained Transdermal Delivery of Collagen for Skin Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:7540-7549. [PMID: 35019495 DOI: 10.1021/acsabm.0c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports a method for transporting high molecular weight collagen for skin regeneration. An independent engineered enzymatic vehicle that has the ability for efficient transdermal delivery of regenerative biomaterial was developed for tissue regeneration. Collagen has been well recognized as a skin regeneration molecule due to its interaction with the extracellular matrix to stimulate skin cell growth, proliferation, and differentiation. However, the transdermal delivery of collagen poses a significant challenge due to its high molecular weight as well as a lack of efficient approaches. Here, to improve the transdermal delivery efficiency, α-1,4-glycosidic hydrolase was engineered with genetically encoded 3,4-dihydroxy-L-phenylalanine, which enhanced its biological activity as revealed by microscale thermophoresis. The remodeled catalytic pocket resulted in enhanced substrate binding activity of the enzyme with a predominant glycosaminoglycan (chondroitin sulfate) present in the extracellular matrix of the skin. The engineered enzyme rapidly opened up the skin extracellular matrix fiber (15 min) to ferry collagen across the wall, without disturbing the cellular bundle architecture. Confocal microscopy indicated that macromolecules had diffused three times deeper into the engineered enzyme-treated skin than the native enzyme-treated skin. Gene expression, histopathology, and hematology analysis also supported the penetration of macromolecules. Cytotoxicity (mammalian cell culture) and in vivo (Caenorhabditis elegans and Rattus noryegicus) studies revealed that the congener enzyme could potentially be used as a penetration enhancer, which is of paramount importance for the multimillion cosmetic industries. Hence, it offers promise as a pharmaceutical enzyme for transdermal delivery bioenhancement and dermatological applications.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Kamini Numbi Ramudu
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| | | | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai 600 020, India.,Academy of Scientific and Innovative Research Central Leather Research Institute Campus, Chennai 600 020, India
| |
Collapse
|
7
|
Augustine G, Raghavan S, NumbiRamudu K, Easwaramoorthi S, Shanmugam G, Seetharani Murugaiyan J, Gunasekaran K, Govind C, Karunakaran V, Ayyadurai N. Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant. J Phys Chem B 2019; 123:2316-2324. [PMID: 30789731 DOI: 10.1021/acs.jpcb.8b10516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Red fluorescent proteins with a large Stokes shift offer a limited autofluorescence background and are used in deep tissue imaging. Here, by introducing the free amino group in Aequorea victoria, the electrostatic charges of the p-hydroxybenzylidene imidazolinone chromophore of green fluorescent protein (GFP) have been altered resulting in an unusual, 85 nm red-shifted fluorescence. The structural and biophysical analysis suggested that the red shift is due to positional shift occupancy of Glu222 and Arg96, resulting in extended conjugation and a relaxed chromophore. Femtosecond transient absorption spectra exhibited that the excited state relaxation dynamics of red-shifted GFP (rGFP) (τ4 = 234 ps) are faster compared to the A. victoria green fluorescent protein (τ4 = 3.0 ns). The nanosecond time-resolved emission spectra of rGFP reveal the continuous spectral shift during emission by a solvent reorientation in the chromophore. Finally, the molecular dynamics simulations revealed the rearrangement of the hydrogen bond interactions in the chromophore vicinity, reshaping the symmetric distribution of van der Waals space to fine tune the GFP structure resulting from highly red-shifted rGFP.
Collapse
Affiliation(s)
- George Augustine
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| | - Sriram Raghavan
- Department of Crystallography and Biophysics , University of Madras , Chennai 600 025 , India
| | - Kamini NumbiRamudu
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| | | | | | | | - Krishnasamy Gunasekaran
- Department of Crystallography and Biophysics , University of Madras , Chennai 600 025 , India
| | - Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , 695 019 Kerala , India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , 695 019 Kerala , India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| |
Collapse
|
8
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018; 57:10118-10122. [PMID: 29542846 PMCID: PMC6099469 DOI: 10.1002/anie.201800937] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 02/06/2023]
Abstract
Novel click reactions are of continued interest in fields as diverse as bio-conjugation, polymer science and surface chemistry. Qualification as a proper "click" reaction requires stringent criteria, including fast kinetics and high conversion, to be met. Herein, we report a novel strain-promoted cycloaddition between cyclopropenes and o-quinones in solution and on a surface. We demonstrate the "click character" of the reaction in solution and on surfaces for both monolayer and polymer brush functionalization.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Rickdeb Sen
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Jorge Escorihuela
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad de ValenciaAvda. Vicente Andrés Estellés s.n.46100-BurjassotValenciaSpain
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
- School of Pharmaceutical Sciences and TechnologyTianjin University92 Weijin RoadTianjinP.R. China
- Department of Chemical and Materials EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
9
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o
-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jorge Escorihuela
- Departamento de Química Orgánica; Facultad de Química; Universidad de Valencia; Avda. Vicente Andrés Estellés s.n. 46100-Burjassot Valencia Spain
| | - Han Zuilhof
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
- School of Pharmaceutical Sciences and Technology; Tianjin University; 92 Weijin Road Tianjin P.R. China
- Department of Chemical and Materials Engineering; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|