1
|
Badr MM, Awadallah-F A, Azzam AM, Mady AH. Influence of gamma irradiation on rosin properties and its antimicrobial activity. Sci Rep 2023; 13:4500. [PMID: 36934117 PMCID: PMC10024741 DOI: 10.1038/s41598-023-31372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/20/2023] Open
Abstract
The main component of rosin natural gum is abietic acid, which has an interesting chemical structure to be studied with the influence of gamma-ray and the antimicrobial activity on the properties of a cheap abundant solid state natural material of rosin. Rosin is exposed to a wide scale of gamma-ray ranges from 0 to 100 kGy. The changes in the properties are tracked by various techniques of FTIR, XRD, TGA, GPC, and SEM. The molecular weight of rosin changes from 370 g/mol to higher and the morphological properties were investigated. The irradiated rosin acid (IRA) at different irradiation doses exploited antimicrobial effect versus Gram-positive and Gram-negative as well. The inhibition zone enhanced from 15 to 33, 14 to 28, 14 to 20, and 9 to 14 mm for Gram-positive and Gram-negative, respectively. Moreover, bioactive behavior for irradiated rosin of 40 kGy recorded the highest antibacterial activity against both types of bacteria. The outcome data of antimicrobial activity are good and confirm that there is a significant effect of irradiation dose on the biocidal activity of rosin.
Collapse
Affiliation(s)
- Magd M Badr
- Polymer Laboratory, Petrochemical Division, Egyptian Petroleum Research Institute (EPRI), P.O. Box 11727, Nasr City, Cairo, Egypt.
| | - Ahmed Awadallah-F
- Radiation Research of Polymer Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed M Azzam
- Department of Environmental Research, Theodor Bilharz Research Institute (TBRI), P.O. Box 30-12411, Imbaba, Giza, Egypt
| | - A H Mady
- Petrochemical Technology Laboratory, Petrochemical Department, Egyptian Petroleum Research Institute (EPRI), P.O. Box 11727, Nasr City, Cairo, Egypt
| |
Collapse
|
2
|
Wang Y, Liu Y, Li X, Liu Y, Wang F, Huang Y, Lv L, Chu Y, Qian Y. Preparation of Nano-Mg(OH) 2 and Its Flame Retardant and Antibacterial Modification on Polyethylene Terephthalate Fabrics. Polymers (Basel) 2022; 15:polym15010007. [PMID: 36616357 PMCID: PMC9824261 DOI: 10.3390/polym15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The multifunctional polyethylene terephthalate (PET) fabrics were successfully prepared through a dip-coating technology to endow the flame retardant and antibacterial properties of PET fabrics, which are extensively used in many fields. The flame retardant and antibacterial agent was synthesized by a double drop-reverse precipitation method and surface-modified by the mixtures of titanate coupling agents and stearic acid to result in a good compatibility of the hydrophilic nano-Mg(OH)2 and the hydrophobic PET fabrics. The results indicated that the suitable synthesis conditions of nano-Mg(OH)2 are: Mg2+ concentration 1.5 mg/mL, reaction temperature 50 °C and reaction time 50 min, and the optimal modification conditions of nano-Mg(OH)2 are: modifier ratio 5/5, modification temperature 70 °C and modification time 40 min. The flame retardant test and the antibacterial test showed that the multifunctional PET fabrics had excellent flame retardant and antibacterial properties.
Collapse
Affiliation(s)
- Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
- China National Textile and Apparel Council Key Laboratory of Flame Retardancy Finishing of Textile Materials, Soochow University, Suzhou 215123, China
- Correspondence: (Y.W.); (Y.Q.)
| | - Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuezhou Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Lihua Lv
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Chu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yongfang Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (Y.W.); (Y.Q.)
| |
Collapse
|
3
|
Ikram M, Jamal F, Haider A, Dilpazir S, Shujah T, Naz M, Imran M, Ul-Hamid A, Shahzadi I, Ullah H, Nabgan W, Ali S. Efficient Photocatalytic Dye Degradation and Bacterial Inactivation by Graphitic Carbon Nitride and Starch-Doped Magnesium Hydroxide Nanostructures. ACS OMEGA 2022; 7:39998-40008. [PMID: 36385836 PMCID: PMC9648148 DOI: 10.1021/acsomega.2c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The removal of hazardous pollutants from water is becoming an increasingly interesting topic of research considering their impact on the environment and the ecosystem. This work was carried out to synthesize graphitic carbon nitride (g-C3N4) and starch-doped magnesium hydroxide (g-C3N4/St-Mg(OH)2) nanostructures via a facile co-precipitation process. The focus of this study is to treat polluted water and bactericidal behavior with a ternary system (doping-dependent Mg(OH)2). Different concentrations (2 and 4 wt %) of g-C3N4 were doped in a fixed amount of starch and Mg(OH)2 to degrade methylene blue dye from an aqueous solution with bactericidal potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) pathogens. The textural structures, morphological evolutions, and optical characteristics of the as-prepared samples were analyzed using advanced characterization techniques. X-ray diffraction confirmed the hexagonal phase of Mg(OH)2 with improved crystallinity upon doping. Fourier transform infrared spectroscopy revealed Mg(OH)2 stretching vibrations and other functional groups. UV-visible spectroscopy exhibited a red shift (bathochromic effect) in absorption spectra representing the decrease in energy band gap (E g). Photoluminescence patterns were recorded to study recombination of charge carriers (e- and h+). A significant enhancement in photodegradation efficiency (97.62%) and efficient bactericidal actions against E. coli (14.10 mm inhibition zone) and S. aureus (7.45 mm inhibition zone) were observed for higher doped specimen 4% g-C3N4/St-Mg(OH)2.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Pakistan
| | - Farzana Jamal
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan66000, Pakistan
| | - Sobia Dilpazir
- Department
of Chemistry, Comsats University, Islamabad45550, Pakistan
| | - Tahira Shujah
- Department
of Physics, University of Central Punjab, Lahore54000, Pakistan
| | - Misbah Naz
- Department
of Chemistry, Division of Science & Technology, University of Education, Lahore54000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab57000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, University
of the Punjab, Allama Iqbal Campus, Lahore54000, Pakistan
| | - Hassam Ullah
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av
Països Catalans 26, Tarragona43007, Spain
| | - Salamat Ali
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore54000, Pakistan
| |
Collapse
|
4
|
Harish, Kumari S, Parihar J, Akash, Kumari J, Kumar L, Debnath M, Kumar V, Mishra RK, Gwag JS, Singhal R, Mukhopadhyay AK, Kumar P. Synthesis, Characterization, and Antibacterial Activity of Calcium Hydroxide Nanoparticles Against Gram‐Positive and Gram‐Negative Bacteria. ChemistrySelect 2022. [DOI: 10.1002/slct.202203094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harish
- Department of Physics Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Sapna Kumari
- Department of Bioscience Manipal University Jaipur Jaipur 303007 Rajasthan
| | - Jagdish Parihar
- Department of Physics Manipal University Jaipur Jaipur 303007 Rajasthan India
- Department of Bioscience & Bioengineering Indian Institute of Technology (IIT) - Jodhpur Jodhpur 342001 Rajasthan India
| | - Akash
- Department of Physics Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Jyoti Kumari
- Department of Physics Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Lalit Kumar
- Department of Physics Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Mousumi Debnath
- Department of Bioscience Manipal University Jaipur Jaipur 303007 Rajasthan
| | - Vipin Kumar
- Department of Physics Yeungnam University Gyeongsan, Gyeongbuk 38541 South Korea
| | | | - Jin Seog Gwag
- Department of Physics Yeungnam University Gyeongsan, Gyeongbuk 38541 South Korea
| | - Rahul Singhal
- Department of Physics Malaviya National Institute of Technology Jaipur 302017 India
| | - Anoop Kumar Mukhopadhyay
- Department of Physics Manipal University Jaipur Jaipur 303007 Rajasthan India
- Department of Physics Sharda School of Basic Sciences and Research Sharda University, Greater Noida 201310 Uttar Pradesh India
| | - Pushpendra Kumar
- Department of Physics Manipal University Jaipur Jaipur 303007 Rajasthan India
| |
Collapse
|
5
|
Alves MM, Batista C, Mil-Homens D, Grenho L, Fernandes MH, Santos CF. Enhanced antibacterial activity of Rosehip extract-functionalized Mg(OH) 2 nanoparticles: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2022; 217:112643. [PMID: 35759895 DOI: 10.1016/j.colsurfb.2022.112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
The development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH)2 NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs. They exhibited a spherical shape with a diameter of ~10 nm, low crystallinity compared to non-functionalized NPs, high polyphenol content, and negative zeta potential in three different media (H2O, TSB, and cell medium). The resulting RH-functionalized Mg-based NPs also exhibited an increased antibacterial activity against Gram-positive (S. Epidermis and S. aureus) and Gram-negative (E. Coli) bacteria compared to those prepared in pure water (0 % RH), an effect that was well evident with low NPs contents (250 μg/mL). A preliminary attempt to elucidate their mechanism of action revealed that RH-functionalized Mg-based NPs could disrupt cellular structures (bacterial cell wall and cytoplasmic membrane) and damage the bacterial cell, as confirmed by TEM imaging. Noteworthy is that Mg-based NPs exhibited higher toxicity to bacteria than to eukaryotic cells. More significantly, was their enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model, when infected with S. aureus bacteria. Overall, our findings indicate that well-engineered Rosehip magnesium-based nanoparticles can be used as a green non-cytotoxic polyphenolic source in different antibacterial applications for the biomedical industry.
Collapse
Affiliation(s)
- Marta M Alves
- Centro Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Catarina Batista
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, Setúbal 2910, Portugal
| | - Dalila Mil-Homens
- iBB - Institute for Bioengineering and Biosciences and i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Liliana Grenho
- Faculdade de Medicina Dentária, Laboratory for Bone Metabolism and Regeneration, Universidade do Porto, Porto 4200-393, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Faculdade de Medicina Dentária, Laboratory for Bone Metabolism and Regeneration, Universidade do Porto, Porto 4200-393, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal.
| | - Catarina F Santos
- Centro Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, Setúbal 2910, Portugal.
| |
Collapse
|
6
|
Azzam AM, Shenashen MA, Selim MS, Mostafa B, Tawfik A, El-Safty SA. Vancomycin-Loaded Furriness Amino Magnetic Nanospheres for Rapid Detection of Gram-Positive Water Bacterial Contamination. NANOMATERIALS 2022; 12:nano12030510. [PMID: 35159855 PMCID: PMC8839226 DOI: 10.3390/nano12030510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022]
Abstract
Bacterial pathogens pose high threat to public health worldwide. Different types of nanomaterials have been synthesized for the rapid detection and elimination of pathogens from environmental samples. However, the selectivity of these materials remains challenging, because target bacterial pathogens commonly exist in complex samples at ultralow concentrations. In this study, we fabricated novel furry amino magnetic poly-L-ornithine (PLO)/amine-poly(ethylene glycol) (PEG)-COOH/vancomycin (VCM) (AM-PPV) nanospheres with high-loading VCM for vehicle tracking and the highly efficient capture of pathogens. The magnetic core was coated with organosilica and functionalized with cilia. The core consisted of PEG/PLO loaded with VCM conjugated to Gram-positive bacterial cell membranes, forming hydrogen bonds with terminal peptides. The characterization of AM-PPV nanospheres revealed an average particle size of 56 nm. The field-emission scanning electron microscopy (FE-SEM) micrographs showed well-controlled spherical AM-PPV nanospheres with an average size of 56 nm. The nanospheres were relatively rough and contained an additional 12.4 nm hydrodynamic layer of PLO/PEG/VCM, which provided additional stability in the suspension. The furry AM-PPV nanospheres exhibited a significant capture efficiency (>90%) and a high selectivity for detecting Bacillus cereus (employed as a model for Gram-positive bacteria) within 15 min, even in the presence of other biocompatible pathogens. Moreover, AM-PPV nanospheres rapidly and accurately detected B. cereus at levels less than 10 CFU/mL. The furry nano-design can potentially satisfy the increasing demand for the rapid and sensitive detection of pathogens in clinical and environmental samples.
Collapse
Affiliation(s)
- Ahmed M. Azzam
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza 12411, Egypt;
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
- Correspondence: (M.A.S.); (S.A.E.-S.)
| | - Mohamed S. Selim
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Bayaumy Mostafa
- Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza 12411, Egypt;
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt;
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Correspondence: (M.A.S.); (S.A.E.-S.)
| |
Collapse
|
7
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Gomaa H, Shenashen MA, Elbaz A, Yamaguchi H, Abdelmottaleb M, El-Safty SA. Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124314. [PMID: 33168312 DOI: 10.1016/j.jhazmat.2020.124314] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The monitoring and removal of abundant heavy metals such as Cu ions are considerable global concerns because of their severe impact on the health of humans and other living organisms. To meet this global challenge, we engineered a novel mesoscopic capture protocol for the highly selective removal and visual monitoring of copper (Cu2+) ions from wide-ranging water sources. The capture hierarchy carriers featured three-dimensional, microsized MgO mesoarchitecture rectangular sheet-like mosaics that were randomly built in horizontal and vertical directions, uniformly arranged sheet faces, corners, and edges, smoothly quadrilateral surface coverage for strong Cu2+-to-ligand binding exposure, and multidiffusible pathways. The Cu2+ ion-selectively active captor surface design was engineered through the simple incorporation/encapsulation of a synthetic molecular chelation agent into hierarchical mesoporous MgO rectangular sheet platforms to produce a selective, visual mesoscopic captor (VMC). The nanoscale VMC dressing of MgO rectangular mosaic hierarchy by molecularly electron-enriched chelates with actively double core bindings of azo- and sulfonamide- groups and hydrophobic dodecyl tail showed potential to selectively trap and efficiently remove ultratrace Cu2+-ions with an extreme removal capability of ~233 mg/g from watery solutions, such as drinking water, hospital effluent, and food-processing wastewater at specific pH values. In addition to the Cu2+ ion-selective removal, the VMC design enabled the continuous visual monitoring of ultratrace Cu2+ ions (~3.35 × 10-8 M) as a consequence of strong chelate-to-Cu2+ binding events among all accumulated matrices in water sources. Our experimental recycle protocol provided evidence of reusability and recyclability of VMC (≥10 cycles). With our mesoscopic capture protocol, the VMC can be a promising candidate for the selective decontamination/removal and sensitive detection of hazardous inorganic pollutants from different water sources with indoor or outdoor applications.
Collapse
Affiliation(s)
- H Gomaa
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - M A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - A Elbaz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Egypt
| | - H Yamaguchi
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - M Abdelmottaleb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - S A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.
| |
Collapse
|
9
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
10
|
Mazumder JA, Perwez M, Noori R, Sardar M. Development of sustainable and reusable silver nanoparticle-coated glass for the treatment of contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23070-23081. [PMID: 31187375 DOI: 10.1007/s11356-019-05647-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Water contaminants like pathogenic microbes and organic pollutants pose a serious threat to human and aquatic life forms; thus, there is an urgent need to develop a sustainable and affordable water treatment technology. Nanomaterials especially metal nanoparticles have extensive applications in wastewater treatment, but the recovery and aggregation of nanoparticles in solution is a major limitation. In the present work, green synthesized silver nanoparticles were covalently immobilized on a glass surface to prevent aggregation of nanoparticles and to enhance their applicability. Fourier transform infrared (FTIR) of silver nanoparticle (AgNP)-coated glass shows peaks of Si-O-Si, Si-O-C, and Ag-O at 1075 cm-1, 780 cm-1, and 608 cm-1 respectively which confirms the immobilization/conjugation of nanomaterial on glass surface. The surface morphology of immobilized AgNP was studied using scanning electron microscopy (SEM) which reveals nanoparticles are spherical and uniformly distributed on glass surface. The AgNP-coated glass was used for the removal of textile dyes in solution; the result indicates approximately 95% of textile dyes were removed after 5 h of treatment. Removal of microbial contaminants from Yamuna River was studied by optical density analysis and confirmed by fluorescence dye staining. The AgNP-coated glass was also studied for their reusability and the data indicates 50% removal of microbes up to the 5th cycle. To further enhance the applicability, the inhibition of bacterial biofilms were analyzed by dark-field illumination with a fluorescence microscope. Thus AgNP-coated glass can be used in the development of food/water storage containers and in textile industries.
Collapse
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
11
|
El-Sewify IM, Shenashen MA, Shahat A, Selim MM, Khalil MM, El-Safty SA. Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Selim MS, Yang H, Wang FQ, Li X, Huang Y, Fatthallah NA. Silicone/Ag@SiO 2 core-shell nanocomposite as a self-cleaning antifouling coating material. RSC Adv 2018; 8:9910-9921. [PMID: 35540804 PMCID: PMC9078747 DOI: 10.1039/c8ra00351c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 11/30/2022] Open
Abstract
The effects of Ag@SiO2 core-shell nanofiller dispersion and micro-nano binary structure on the self-cleaning and fouling release (FR) in the modelled silicone nano-paints were studied. An ultrahydrophobic polydimethylsiloxane/Ag@SiO2 core-shell nanocomposite was prepared as an antifouling coating material. Ag@SiO2 core-shell nanospheres with 60 nm average size and a preferential {111} growth direction were prepared via a facile solvothermal and a modified Stöber methods with a controlled shell thickness. Ag@SiO2 core-shell nanofillers were inserted in the silicone composite surface via solution casting technique. A simple hydrosilation curing mechanism was used to cure the surface coating. Different concentrations of nanofillers were incorporated in the PDMS matrix for studying the structure-property relationship. Water contact angle (WCA) and surface free energy determinations as well as atomic force microscopy and scanning electron microscope were used to investigate the surface self-cleaning properties of the nanocomposites. Mechanical and physical properties were assessed as durability parameters. A comparable study was carried out between silicone/spherical Ag@SiO2 core-shell nanocomposites and other commercial FR coatings. Selected micro-foulants were used for biological and antifouling assessments up to 28 days. Well-distributed Ag@SiO2 core-shell (0.5 wt%) exhibited the preferable self-cleaning with WCA of 156° and surface free energy of 11.15 mN m-1.
Collapse
Affiliation(s)
- Mohamed S Selim
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
- Petroleum Application Department, Egyptian Petroleum Research Institute Nasr City 11727 Cairo Egypt
| | - Hui Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
| | - Feng Q Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
| | - Xue Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan 336 West Road of Nan Xinzhuang Jinan 250022 China
| | - Yong Huang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science 29 Zhongguancun East Road, Haidian District Beijing 100190 China
| | | |
Collapse
|
13
|
Emran MY, Shenashen MA, Abdelwahab AA, Abdelmottaleb M, El-Safty SA. Facile synthesis of microporous sulfur-doped carbon spheres as electrodes for ultrasensitive detection of ascorbic acid in food and pharmaceutical products. NEW J CHEM 2018; 42:5037-5044. [DOI: 10.1039/c7nj05047j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The active interfacial surface of S-doped microporous carbon spheres strongly binds with ascorbic acid in food and pharmaceutical products.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS)
- Tsukuba-shi
- Japan
- Department of Chemistry
- Faculty of Science
| | | | - Adel A. Abdelwahab
- Department of Chemistry
- Faculty of Science
- Al-Azhar University
- Assiut 71524
- Egypt
| | | | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Tsukuba-shi
- Japan
- Faculty of Engineering and Advanced Manufacturing
- University of Sunderland
| |
Collapse
|