1
|
Costa RR, Reis RL, Pashkuleva I. Glycosaminoglycans as polyelectrolytes: implications in bioactivity and assembly of biomedical devices. INTERNATIONAL MATERIALS REVIEWS 2022; 67:765-795. [DOI: 10.1080/09506608.2022.2026860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2025]
Affiliation(s)
- Rui R. Costa
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
- ICVS/3B's, PT Government Associated Laboratory, Braga, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
- ICVS/3B's, PT Government Associated Laboratory, Braga, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
- ICVS/3B's, PT Government Associated Laboratory, Braga, Portugal
| |
Collapse
|
2
|
Morozova JE, Shumatbaeva AM, Antipin IS. Colloidal Solutions of Supramolecular para/meta-Cyclophane–Polyelectrolyte Complexes: Examples, Properties, and Application. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x2270003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Yu X, Ren X, Wang M, Wang K, Zhang D. Evaluation of biosafety/biocompatibility of calixpyridinium on different cell lines. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01034-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Wang K, Wang XY, Gao GJ, Ren XW, Cai XY, Yu QK, Xing S, Zhu B. Multistimuli responsive RNA amphiphilic polymeric assembly constructed by calixpyridinium-based supramolecular interactions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Wang K, Wang MN, Wang QQ, Feng YX, Wu Y, Xing SY, Zhu BL, Zhang ZH. Needle-like supramolecular amphiphilic assembly constructed by the host–guest interaction between calixpyridinium and methotrexate disodium. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Wang K, Ren XW, Wang XY, Xing SY, Zhu BL, Liu C. DNase I-Responsive Calixpyridinium-Mediated DNA Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10505-10511. [PMID: 31310550 DOI: 10.1021/acs.langmuir.9b01116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, cationic macrocyclic calixpyridinium was employed as a new strategy to condense DNA. Moreover, the degradation of DNA by DNase I could lead to the calixpyridinium-DNA supramolecular aggregates being dissipated. Therefore, the present system is potentially applicable as the targeted drug delivery model at DNase I-overexpressed sites.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Xiao-Wei Ren
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Xiao-Yan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Bo-Lin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Chang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| |
Collapse
|
7
|
Wang K, Wang QQ, Wang MN, Xing S, Zhu B, Zhang ZH. Supramolecular Amphiphilic Assembly Formed by the Complexation of Calixpyridinium with Alimta. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9020-9028. [PMID: 31203624 DOI: 10.1021/acs.langmuir.9b01336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the host-guest interaction between calixpyridinium and anionic anticancer drug Alimta was studied in aqueous media. Spherical supramolecular amphiphilic assembly rather than simple complex was accidentally fabricated by the complexation of calixpyridinium with Alimta. It is the third kind of anionic guest to be discovered to form the higher-order assembly by the complexation of calixpyridinium besides polyanionic guest and anionic gemini surfactant guest. The finding of this assembly approach supplies a new idea to construct various self-assembly architectures in water via the complexation of calixpyridinium with anionic drugs. The resulting calixpyridinium-drug assemblies may also have the potential to adjust the effects of drugs.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Qi-Qi Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Mi-Ni Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| | - Ze-Hao Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Binshuixi Road 393 , Xiqing District, Tianjin 300387 , China
| |
Collapse
|
8
|
Luo M, Dou H, Wang K, Feng Y, Xing S, Zhu B, Wu Y. pH‐Selective Fluorescent Enhancement with Glyphosate in Aqueous Media. ChemistrySelect 2019. [DOI: 10.1002/slct.201901038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Meng‐Han Luo
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesMOE Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Hong‐Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesMOE Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesMOE Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Yu‐Xin Feng
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesMOE Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Si‐Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesMOE Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Bo‐Lin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesMOE Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Yue Wu
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesMOE Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
9
|
Wang K, Wang MM, Dou HX, Xing SY, Zhu BL, Cui JH. Comparative Study on the Supramolecular Assemblies Formed by Calixpyridinium and Two Alginates with Different Viscosities. ACS OMEGA 2018; 3:10033-10041. [PMID: 31459131 PMCID: PMC6645020 DOI: 10.1021/acsomega.8b01554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 06/09/2023]
Abstract
In this work, a comparative study on the supramolecular assemblies formed by calixpyridinium and two alginates with different viscosities was performed. We found that sodium alginate (SA) with medium viscosity (SA-M) had a better capability to induce aggregation of calixpyridinium in comparison with SA with low viscosity (SA-L) because of the stronger electrostatic interactions between calixpyridinium and SA-M. Therefore, the morphology of calixpyridinium-SA-M supramolecular aggregates was a compact spherical structure, while that of calixpyridinium-SA-L supramolecular aggregates was an incompact lamellar structure. As a result, adding much more amount of 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt to calixpyridinium-SA-M solution was required to achieve the balance of the competitive binding, and in comparison with calixpyridinium-SA-L supramolecular aggregates, calixpyridinium-SA-M supramolecular aggregates were more sensitive to alkali. However, for the same reason, in comparison with calixpyridinium-SA-M supramolecular aggregates, calixpyridinium-SA-L supramolecular aggregates were much more stable in water not only at room temperature but also at a higher temperature, and even in salt solution. Therefore, in comparison with calixpyridinium-SA-L supramolecular aggregates, calixpyridinium-SA-M supramolecular aggregates exhibited a completely opposite response to acid because of the generation of salt. Because SA is an important biomaterial with excellent biocompatibility, it is anticipated that this comparative study is extremely important in constructing functional supramolecular biomaterials.
Collapse
|
10
|
Wang K, Dou HX, Wang MM, Xing SY, Wang XY. Synthesis of Two Anionic Gemini Surfactants and Their Self-Assembly Induced by the Complexation of Calixpyridinium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8052-8057. [PMID: 29906388 DOI: 10.1021/acs.langmuir.8b01630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The information in the literature concerned with lowering the critical aggregation concentration of anionic surfactants by macrocyclic compounds is scarce. This research develops an effective route for lowering the critical aggregation concentration of anionic gemini surfactants by the complexation of calixpyridinium. Furthermore, the size of complex self-assembled nanostructures can be well controlled by the different mixing ratio of the host and the guest.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Hong-Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Meng-Meng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Xiao-Yan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| |
Collapse
|