1
|
Gogoi N, Gogoi B, Kaishap PP, Chetia D. Identification of antimalarial phytoconstituents from Tinospora sinensis (Lour.) Merr. Stem by in vitro whole cell assay and multiple targets directed in silico screening against Plasmodium falciparum. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119134. [PMID: 39566861 DOI: 10.1016/j.jep.2024.119134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora sinensis (Lour.) Merr., from the family Menispermaceae, is widely used in Indian folk and Ayurvedic medicine. Indigenous tribes such as the Tea-tribe and Chorei-tribe of Assam use its bark and stem as a herbal remedy to treat malaria and it is also traditionally employed for conditions such as dyspepsia, inflammation, fever, ulcers, jaundice, diabetes and various urinary, skin, and liver diseases. AIM OF THE STUDY This study aims to identify and characterize antimalarial phytoconstituents from the active extract of T. sinensis stem by in vitro screening against both the Chloroquine-sensitive (Pf3D7) as well as Chloroquine-resistant (PfRKL-9) strains of Plasmodium falciparum, along with exploring potential targets and mechanisms using molecular docking and dynamics simulation studies. MATERIALS AND METHODS T. sinensis stems were collected from Assam, India, and authenticated by the Botanical Survey of India. The plant materials were initially extracted with non-polar to polar solvents and screened for in vitro antimalarial potency against Pf3D7 and PfRKL-9. Then, the methanol extract was selected for bioassay-guided isolation of phytoconstituent(s). The isolated phytoconstituent(s) were screened for antimalarial potential and active compounds were further evaluated for cytotoxicity using the HEK-293 cell line. Structural characterization of the active compounds involved the use of UV-VIS, IR, NMR and HRMS analyses. Molecular docking and dynamics simulation studies were performed on selected targets from P. falciparum to predict binding affinities and mechanisms of action. RESULTS From the methanol extract of T. sinensis stem, five phytoconstituents were isolated, including isoquinoline alkaloids Berberine (NG1) and Palmatine (NG2) showed the best antimalarial activity (IC50 < 1 μg/ml) against both Pf3D7 and PfRKL-9. Cytotoxicity assays confirmed their safety and selectivity. Molecular docking and dynamic simulation studies revealed that Berberine and Palmatine formed stable complexes with P. falciparum lysyl-tRNA synthetase and P. falciparum aminopeptidase N, respectively, indicating their potential as antimalarial leads. CONCLUSION This study identifies two potent antimalarial phytoconstituents in the stem of T. sinensis, validating its traditional use and demonstrating its safety and efficacy for potential global application in malaria treatment.
Collapse
Affiliation(s)
- Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India; Department of Pharmacognosy, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, Assam, India.
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, Royal School of Bio-sciences, Royal Global University, Guwahati, Assam, India
| | - Partha Pratim Kaishap
- Department of Pharmaceutical Sciences, Sushruta School of Medical and Paramedical Sciences, Assam University, Silchar, Assam, India.
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
2
|
Poghosyan AS, Khachatryan EA, Mkrtchyan AF, Mirzoyan V, Hovhannisyan AM, Ghazaryan KR, Minasyan EV, Langer P, Saghyan AS. Synthesis of enantiomerically enriched β-substituted analogs of (S)-α-alanine containing 1-phenyl-1H-1,2,3-triazole groups. Amino Acids 2024; 56:67. [PMID: 39627616 PMCID: PMC11615008 DOI: 10.1007/s00726-024-03430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
A synthesis of new enantiomerically enriched derivatives of (S)-α-aminopropionic acid, containing in the β-position 1,2,3-triazole groups coupled with a o-, m- and p-substituted phenyl residue, was developed based on Cu(I) catalyzed [3 + 2] cycloaddition of azides with alkynes. As the starting materials was used the square-planar Ni(II)complex of the Schiff base of propargylglycine with the chiral auxiliary BPB (Benzylprolylbenzophenone) and 1,4-substituted phenyl azides. The assignment of the (S)-absolute configuration of the α-carbon atom of the amino acid residue of the main diastereomeric complexes of the cycloaddition products was carried out on the basis of positive Cotton effects in the region of 480-580 nm of the circular dichroism spectra. The target amino acids were isolated from acid hydrolysates of diastereomeric complexes using ion-exchange demineralization and crystallization from aqueous ethanol. Additional confirmation of the absolute configuration and determination of the enantiomeric purity of the target amino acids were carried out by chiral HPLC analysis. As a result, seven new non-proteinogenic (S)-α-amino acids, containing in the β-position a 1,2,3-triazole moiety, were synthesized.
Collapse
Affiliation(s)
- Artavazd S Poghosyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia
| | - Emma A Khachatryan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Anna F Mkrtchyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia.
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia.
| | - Volodya Mirzoyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Anahit M Hovhannisyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Karapet R Ghazaryan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Ela V Minasyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia
| | - Peter Langer
- Institute of Chemistry, Organic Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany.
| | - Ashot S Saghyan
- Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia.
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Ismail N, Ling LY, Hassan NI. Pyridine and Pyrimidine hybrids as privileged scaffolds in antimalarial drug discovery: A recent development. Bioorg Med Chem Lett 2024; 114:129992. [PMID: 39426430 DOI: 10.1016/j.bmcl.2024.129992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Malaria continues to pose a significant threat to global health, which is exacerbated by the emergence of drug-resistant strains, necessitating the urgent development of new therapeutic options. Due to their substantial bioactivity in treating malaria, pyridine and pyrimidine have become the focal point of drug research. Hybrids of pyridine and pyrimidine offer a novel and promising avenue for developing effective antimalarial agents. The ability of these hybrids to overcome drug resistance is tinted, offering a potential solution to this critical obstacle in the treatment of malaria. By targeting multiple pathways, these hybrid compounds reduce the likelihood of resistance development, providing a promising strategy for combating drug-resistant strains of malaria. The review focuses on the most recent developments in 2018 in the structural optimization of pyridine and pyrimidine hybrid compounds, highlighting modifications that have been shown to improve antimalarial activity. Structure-activity studies have elucidated the essential characteristics required for potency, selectivity, and pharmacokinetics. Molecular docking and virtual screening expedite the identification of novel compounds with enhanced activity profiles. This analysis could aid in developing the most effective pyridine and pyrimidine hybrids as antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W6 UW London, United Kingdom
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
4
|
Luo XF, Zhou H, Deng P, Zhang SY, Wang YR, Ding YY, Wang GH, Zhang ZJ, Wu ZR, Liu YQ. Current development and structure-activity relationship study of berberine derivatives. Bioorg Med Chem 2024; 112:117880. [PMID: 39216382 DOI: 10.1016/j.bmc.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.
Collapse
Affiliation(s)
- Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
6
|
Pillaiyar T, Wozniak M, Abboud D, Rasch A, Liebing AD, Poso A, Kronenberger T, Stäubert C, Laufer SA, Hanson J. Development of Ligands for the Super Conserved Orphan G Protein-Coupled Receptor GPR27 with Improved Efficacy and Potency. J Med Chem 2023; 66:17118-17137. [PMID: 38060818 DOI: 10.1021/acs.jmedchem.3c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The orphan G protein-coupled receptor GPR27 appears to play a role in insulin production, secretion, lipid metabolism, neuronal plasticity, and l-lactate homeostasis. However, investigations on the function of GPR27 are impaired by the lack of potent and efficacious agonists. We describe herein the development of di- and trisubstituted benzamide derivatives 4a-e, 7a-z, and 7aa-ai, which display GPR27-specific activity in a β-arrestin 2 recruitment-based assay. Highlighted compounds are PT-91 (7p: pEC50 6.15; Emax 100%) and 7ab (pEC50 6.56; Emax 99%). A putative binding mode was revealed by the docking studies of 7p and 7ab with a GPR27 homology model. The novel active compounds exhibited no GPR27-mediated activation of G proteins, indicating that the receptor may possess an atypical profile. Compound 7p displays high metabolic stability and brain exposure in mice. Thus, 7p represents a novel tool to investigate the elusive pharmacology of GPR27 and assess its potential as a drug target.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Alexander Rasch
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
7
|
Bandyopadhyay M, Bhadra S, Pathak S, Menon AM, Chopra D, Patra S, Escorihuela J, De S, Ganguly D, Bhadra S, Bera MK. An Atom-Economic Method for 1,2,3-Triazole Derivatives via Oxidative [3 + 2] Cycloaddition Harnessing the Power of Electrochemical Oxidation and Click Chemistry. J Org Chem 2023; 88:15772-15782. [PMID: 37924324 DOI: 10.1021/acs.joc.3c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
An electrochemical method was developed to accomplish the reagentless synthesis of 4,5-disubstituted triazole derivatives employing secondary propargyl alcohol as C-3 synthon and sodium azide as cycloaddition counterpart. The reaction was conducted at room temperature in an undivided cell with a constant current using a pencil graphite (C) anode and stainless-steel cathode in a MeCN solvent system. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments and further supported by electrochemical and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Manas Bandyopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Sayan Bhadra
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Swastik Pathak
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Snehangshu Patra
- Sustainable Hydrogen for Valuable Applications (SHYVA), 23 Allee Gilbert Becaud, 34470 Perols, France
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Souradeep De
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology (IIEST), P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Suman Bhadra
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| |
Collapse
|
8
|
Buchanan D, Pham AM, Singh SK, Panda SS. Molecular Hybridization of Alkaloids Using 1,2,3-Triazole-Based Click Chemistry. Molecules 2023; 28:7593. [PMID: 38005315 PMCID: PMC10674395 DOI: 10.3390/molecules28227593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Alkaloids found in multiple species, known as 'driver species', are more likely to be included in early-stage drug development due to their high biodiversity compared to rare alkaloids. Many synthetic approaches have been employed to hybridize the natural alkaloids in drug development. Click chemistry is a highly efficient and versatile reaction targeting specific areas, making it a valuable tool for creating complex natural products and diverse molecular structures. It has been used to create hybrid alkaloids that address their limitations and serve as potential drugs that mimic natural products. In this review, we highlight the recent advancements made in modifying alkaloids using click chemistry and their potential medicinal applications. We discuss the significance, current trends, and prospects of click chemistry in natural product-based medicine. Furthermore, we have employed computational methods to evaluate the ADMET properties and drug-like qualities of hybrid molecules.
Collapse
Affiliation(s)
- Devan Buchanan
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (A.M.P.)
| | - Ashley M. Pham
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (A.M.P.)
| | - Sandeep K. Singh
- Jindal Global Business School, OP Jindal Global University, Sonipat 131001, India;
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (A.M.P.)
- Department Biochemistry and Molecular Biology, Augusta University Augusta, GA 30912, USA
| |
Collapse
|
9
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Triazole hybrid compounds: A new frontier in malaria treatment. Eur J Med Chem 2023; 259:115694. [PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
10
|
Abdul Rahman SM, Bhatti JS, Thareja S, Monga V. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds. Eur J Med Chem 2023; 259:115699. [PMID: 37542987 DOI: 10.1016/j.ejmech.2023.115699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Malaria is among one of the most devastating and deadliest parasitic disease in the world claiming millions of lives every year around the globe. It is a mosquito-borne infectious disease caused by various species of the parasitic protozoan of the genus Plasmodium. The indiscriminate exploitation of the clinically used antimalarial drugs led to the development of various drug-resistant and multidrug-resistant strains of plasmodium which severely reduces the therapeutic effectiveness of most frontline medicines. Therefore, there is urgent need to develop novel structural classes of antimalarial agents acting with unique mechanism of action(s). In this context, design and development of hybrid molecules containing pharmacophoric features of different lead molecules in a single entity represents a unique strategy for the development of next-generation antimalarial drugs. Research efforts by the scientific community over the past few years has led to the identification and development of several heterocyclic small molecules as antimalarial agents with high potency, less toxicity and desired efficacy. Triazole derivatives have become indispensable units in the medicinal chemistry due to their diverse spectrum of biological profiles and many triazole based hybrids and conjugates have demonstrated potential in vitro and in vivo antimalarial activities. The manuscript compiled recent developments in the medicinal chemistry of triazole based small heterocyclic molecules as antimalarial agents and discusses various reported biologically active compounds to lay the groundwork for the rationale design and discovery of triazole based antimalarial compounds. The article emphasised on biological activities, structure activity relationships, and molecular docking studies of various triazole based hybrids with heterocycles such as quinoline, artemisinins, naphthyl, naphthoquinone, etc. as potential antimalarial agents which could act on the dual stage and multi stage of the parasitic life cycle.
Collapse
Affiliation(s)
- S Maheen Abdul Rahman
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
11
|
Prasad Raiguru B, Panda J, Mohapatra S, Nayak S. Recent developments in the synthesis of hybrid antimalarial drug discovery. Bioorg Chem 2023; 139:106706. [PMID: 37406519 DOI: 10.1016/j.bioorg.2023.106706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this 21st century, Malaria remains a global burden and causes massive economic trouble to disease-endemic nations. The control and eradication of malaria is a major challenge that requires an urgent need to develop novel antimalarial drugs. To overcome the aforementioned situation, several researchers have given significant effort to develop hybrid antimalarial agents in the search for new antimalarial drugs. Hence, we have summarized those developments of hybrid antimalarial agents from 2017 to till date. This review illustrates the current progress in the recent synthesis of hybrid antimalarial agents along with focusing on their antimalarial evaluation to find the most potent hybrids. This present mini-review will also be useful for the scientific community for the development of new antimalarial drugs to eradicate malaria.
Collapse
Affiliation(s)
| | - Jasmine Panda
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| |
Collapse
|
12
|
Ravisankar N, Sarathi N, Maruthavanan T, Ramasundaram S, Ramesh M, Sankar C, Umamatheswari S, Kanthimathi G, Oh TH. Synthesis, antimycobacterial screening, molecular docking, ADMET prediction and pharmacological evaluation on novel pyran-4-one bearing hydrazone, triazole and isoxazole moieties: Potential inhibitors of SARS CoV-2. J Mol Struct 2023; 1285:135461. [PMID: 37041803 PMCID: PMC10062711 DOI: 10.1016/j.molstruc.2023.135461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
The respiratory infection tuberculosis is caused by the bacteria Mycobacterium tuberculosis and its unrelenting spread caused millions of deaths around the world. Hence, it is needed to explore potential and less toxic anti-tubercular drugs. In the present work, we report the synthesis and antitubercular activity of four different (hydrazones 7-12, O-ethynyl oximes 19-24, triazoles 25-30, and isoxazoles 31-36) hybrids. Among these hybrids 9, 10, 33, and 34, displayed high antitubercular activity at 3.12 g/mL with >90% of inhibitions. The hybrids also showed good docking energies between -6.8 and -7.8 kcal/mol. Further, most active molecules were assayed for their DNA gyrase reduction ability towards M. tuberculosis and E.coli DNA gyrase by the DNA supercoiling and ATPase gyrase assay methods. All four hybrids showed good IC50 values comparable to that of the reference drug. In addition, the targets were also predicted as a potential binder for papain-like protease (SARS CoV-2 PLpro) by molecular docking and a good interaction result was observed. Besides, all targets were predicted for their absorption, distribution, metabolism, and excretion - toxicity (ADMET) profile and found a significant amount of ADMET and bioavailability.
Collapse
Affiliation(s)
- N Ravisankar
- Department of Chemistry, Veltech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai 600 062, India
| | - N Sarathi
- Department of Chemistry, GRT Institute of Engineering and Technology (Affiliated to Anna University), Tiruttani 631 209, Tamil Nadu, India
| | - T Maruthavanan
- Department of Chemistry, SONASTARCH, Sona College of Technology, Salem 636005, Tamil Nadu, India
| | | | - M Ramesh
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - C Sankar
- Department of Chemistry, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu 621 105, India
| | - S Umamatheswari
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - G Kanthimathi
- Department of Chemistry, Ramco Institue of Technology, Rajapalayam, Tamil Nadu 626 117, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea
| |
Collapse
|
13
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
14
|
Sharma MK, Parashar S, Sharma D, Jakhar K, Lal K, Pandya NU, Om H. Synthesis, characterization, docking and antimicrobial studies of binol based amide linked symmetrical bistriazoles. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Chander, Monika, Sharma PK, Ram S. Recent advances in triazole-benzenesulfonamide hybrids and their biological activities. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
Synthesis and antimalarial activity of 7-chloroquinoline-tethered sulfonamides and their [1,2,3]-triazole hybrids. Future Med Chem 2022; 14:1725-1739. [PMID: 36453182 DOI: 10.4155/fmc-2022-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Aim & background: Drugs with multiple bioactive moieties have the advantages of multiple modes of action and fewer chances of drug resistance. In continuation of our previous work of developing hybrid antimalarials, we present herein the synthesis and antimalarial activity of two different series of 7-chloroquinoline-sulfonamide hybrids. Materials & methods: The first series of compounds were synthesized by using p-dodecylbenzenesulfonic acid as a Bronsted acid catalyst in ethanol. The second series' compounds were synthesized by 1,3-dipolar cycloaddition of azides and alkynes under click reaction conditions. Results & conclusion: The majority of these compounds demonstrated noncytotoxicity and significant antimalarial activity against Plasmodium falciparum (3D7) with IC50 values in the range of 1.49-13.49 μM. The most promising hybrids (12d, 13a and 13c) may be good starting points for next-generation antimalarials.
Collapse
|
17
|
Saroha B, Kumar G, Kumar R, Kumari M, Kumar S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem Biol Drug Des 2022; 100:843-869. [PMID: 34592059 DOI: 10.1111/cbdd.13966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Kumari
- Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
18
|
Vala D, Vala RM, Patel HM. Versatile Synthetic Platform for 1,2,3-Triazole Chemistry. ACS OMEGA 2022; 7:36945-36987. [PMID: 36312377 PMCID: PMC9608397 DOI: 10.1021/acsomega.2c04883] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 05/31/2023]
Abstract
1,2,3-Triazole scaffolds are not obtained in nature, but they are still intensely investigated by synthetic chemists in various fields due to their excellent properties and green synthetic routes. This review will provide a library of all synthetic routes used in the past 21 years to synthesize 1,2,3-triazoles and their derivatives using various metal catalysts (such as Cu, Ni, Ru, Ir, Rh, Pd, Au, Ag, Zn, and Sm), organocatalysts, metal-free as well as solvent- and catalyst-free neat syntheses, along with their mechanistic cycles, recyclability studies, solvent systems, and reaction condition effects on regioselectivity. Constant developments indicate that 1,2,3-triazoles will help lead to future organic synthesis and are useful for creating molecular libraries of various functionalized 1,2,3-triazoles.
Collapse
|
19
|
Synthesis of 1,2,3-Triazolyl-Substituted Derivatives of the Alkaloids Sinomenine and Tetrahydrothebaine on Ring A and Their Analgesic Activity. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Design, Synthesis, Molecular Docking and Antimicrobial Activities of Novel Triazole-ferulic acid ester Hybrid Carbohydrates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Sharma MK, Parashar S, Chahal M, Lal K, Pandya NU, Om H. Antimicrobial and in-silico evaluation of novel chalcone and amide-linked 1,4-disubstituted 1,2,3 triazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Butani SC, Vekariya MK, Dholaria PV, Kapadiya KM, Desai ND. Copper(I)-Catalyzed Click Chemistry-Based Synthesis and Antimicrobial Evaluation of Triazolopyridine–Triazole Congeners. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Torabi M, Yarie M, Zolfigol MA, Azizian S, Gu Y. A magnetic porous organic polymer: catalytic application in the synthesis of hybrid pyridines with indole, triazole and sulfonamide moieties. RSC Adv 2022; 12:8804-8814. [PMID: 35424833 PMCID: PMC8984949 DOI: 10.1039/d2ra00451h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Herein, the synthesis and characterization of a triazine-based magnetic ionic porous organic polymer are reported. The structure, morphology, and components of the prepared structure have been investigated with several spectroscopic and microscopic techniques such as FT-IR, EDX, elemental mapping, TGA/DTA, SEM, TEM, VSM, and BET analysis. Also, catalytic application of the prepared triazine-based magnetic ionic porous organic polymer was investigated for the synthesis of hybrid pyridine derivatives bearing indole, triazole and sulfonamide groups. Furthermore, the prepared hybrid pyridine systems were characterized by FT-IR, 1H NMR, 13C NMR and mass analysis. A cooperative vinylogous anomeric-based oxidation pathway was suggested for the synthesis of target molecules.
Collapse
Affiliation(s)
- Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran +988138380709 +988138282807
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran +988138380709 +988138282807
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 China
| |
Collapse
|
24
|
Caiana RRA, Santos CS, de Oliveira RN, Freitas JCR. Scientific and Technological Prospecting of 1H-1,2,3-Triazoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126153429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The use of 1H-1,2,3-triazoles has become an important scaffold for applications in different technological sectors. Therefore, we sought to carry out a technological monitoring to understand the international scenario involving 1H-1,2,3-triazoles from the patents filed, in addition to evaluating the relationship between the growth in the number of patents and the improvement of strategies for obtaining of these compounds via a metal-catalyzed azide-alkyne cycloaddition reaction. Technological monitoring was performed with the support of the PatentInspiration® platform, using the keywords "1,2,3-triazol", "1,2,3-triazole", and "1,2,3-triazolyl". A total of 960 registered patents were found, most for the years 2014 and 2019. The main filers were prestigious multinational companies such as Syngenta, Merck, Sandoz, Pfizer, and Bayer. The United States, China, Japan, and Germany lead patent registrations, mainly addressing innovations in chemistry and metallurgy, human needs, and new technologies. These results help to understand the state of innovation for this topic, pointing out the characteristics of the main discoveries concerning 1H-1,2,3-triazole derivatives.
Collapse
Affiliation(s)
| | - Cosme Silva Santos
- Department of Chemistry, Federal Rural University of Pernambuco, 52171-900, Recife-PE, Brazil
| | | | | |
Collapse
|
25
|
Pal A, Krishna Banik B. Click Chemistry toward the Synthesis of Anticancer Agents. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Larroza A, Krüger R, Fronza MG, Pesarico AP, de Oliveira DH, Savegnago L, Alves D. Synthesis of sulfamoyl-triazolyl-carboxamides as pharmacological myeloperoxidase inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfamoyl-triazolyl-carboxamides were synthesized using DBU as a catalyst, and their molecular docking and MPO activity analyses were performed.
Collapse
Affiliation(s)
- Allya Larroza
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Roberta Krüger
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Mariana G. Fronza
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Ana Paula Pesarico
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Daniela H. de Oliveira
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
27
|
Pillaiyar T, Rosato F, Wozniak M, Blavier J, Charles M, Laschet C, Kronenberger T, Müller CE, Hanson J. Structure-activity relationships of agonists for the orphan G protein-coupled receptor GPR27. Eur J Med Chem 2021; 225:113777. [PMID: 34454125 DOI: 10.1016/j.ejmech.2021.113777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
GPR27 belongs, with GPR85 and GPR173, to a small subfamily of three receptors called "Super-Conserved Receptors Expressed in the Brain" (SREB). It has been postulated to participate in key physiological processes such as neuronal plasticity, energy metabolism, and pancreatic β-cell insulin secretion and regulation. Recently, we reported the first selective GPR27 agonist, 2,4-dichloro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (I, pEC50 6.34, Emax 100%). Here, we describe the synthesis and structure-activity relationships of a series of new derivatives and analogs of I. All products were evaluated for their ability to activate GPR27 in an arrestin recruitment assay. As a result, agonists were identified with a broad range of efficacies including partial and full agonists, showing higher efficacies than the lead compound I. The most potent agonist was 4-chloro-2,5-difluoro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7y, pEC50 6.85, Emax 37%), and the agonists with higher efficacies were 4-chloro-2-methyl-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7p, pEC50 6.04, Emax 123%), and 2-bromo-4-chloro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7r, pEC50 5.99, Emax 123%). Docking studies predicted the putative binding site and interactions of agonist 7p with GPR27. Selected potent agonists were found to be soluble and devoid of cellular toxicity within the range of their pharmacological activity. Therefore, they represent important new tools to further characterize the (patho)physiological roles of GPR27.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany; Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| | - Francesca Rosato
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Jeremy Blavier
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Maëlle Charles
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany; Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Str. 14, Tübingen, 72076, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| |
Collapse
|
28
|
Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. J Enzyme Inhib Med Chem 2021; 36:1115-1144. [PMID: 34167422 PMCID: PMC8231395 DOI: 10.1080/14756366.2021.1890066] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zheng-Ai Chen
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
29
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
30
|
Graciano IA, de Carvalho AS, de Carvalho da Silva F, Ferreira VF. 1,2,3-Triazole- and Quinoline-Based Hybrids with Potent Antiplasmodial Activity. Med Chem 2021; 18:521-535. [PMID: 34758718 DOI: 10.2174/1573406418666211110143041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. OBJECTIVE This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. METHOD We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. RESULTS The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. CONCLUSION Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.
Collapse
Affiliation(s)
- Isabela A Graciano
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Alcione S de Carvalho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói, RJ. Brazil
| |
Collapse
|
31
|
Synthesis and analgesic activity of 1-[(1,2,3-triazol-1-yl)methyl]quinolizines based on the alkaloid lupinine. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Erdoğan M, Serdaroğlu G. New Hybrid (E)‐4‐((pyren‐1‐ylmethylene)amino)‐N‐(thiazol‐2‐yl)benzenesulfonamide as a Potential Drug Candidate: Spectroscopy, TD‐DFT, NBO, FMO, and MEP Studies**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering Faculty of Engineering and Architecture Kafkas University Kars 36100 Turkey
| | | |
Collapse
|
33
|
Shiri P, Amani AM, Mayer-Gall T. A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Beilstein J Org Chem 2021; 17:1600-1628. [PMID: 34354770 PMCID: PMC8290111 DOI: 10.3762/bjoc.17.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Diverse strategies for the efficient and attractive synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and industry. The current review aims to cover a wide literature survey of numerous synthetic strategies. Recent reports (2017–2021) in the field of 1,4,5-trisubstituted 1,2,3-triazoles are emphasized in this current review.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas Mayer-Gall
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.,Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
| |
Collapse
|
34
|
Ciupak O, Daśko M, Biernacki K, Rachon J, Masłyk M, Kubiński K, Martyna A, Demkowicz S. New potent steroid sulphatase inhibitors based on 6-(1-phenyl-1 H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. J Enzyme Inhib Med Chem 2021; 36:238-247. [PMID: 33322953 PMCID: PMC7744152 DOI: 10.1080/14756366.2020.1858820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present work, we report a new class of potent steroid sulphatase (STS) inhibitors based on 6-(1-phenyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. Within the set of new STS inhibitors, 6-(1-(1,2,3-trifluorophenyl)-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate 3L demonstrated the highest activity in the enzymatic assay inhibiting the STS activity to 7.98% at 0.5 µM concentration. Furthermore, to verify whether the obtained STS inhibitors are able to pass through the cellular membrane effectively, cell line experiments have been carried out. We found that the lowest STS activities were measured in the presence of compound 3L (remaining STS activity of 5.22%, 27.48% and 99.0% at 100, 10 and 1 nM concentrations, respectively). The measured STS activities for Irosustat (used as a reference) were 5.72%, 12.93% and 16.83% in the same concentration range. Moreover, a determined IC50 value of 15.97 nM for 3L showed that this compound is a very promising candidate for further preclinical investigations.
Collapse
Affiliation(s)
- Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
35
|
da S M Forezi L, Lima CGS, Amaral AAP, Ferreira PG, de Souza MCBV, Cunha AC, de C da Silva F, Ferreira VF. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. CHEM REC 2021; 21:2782-2807. [PMID: 33570242 DOI: 10.1002/tcr.202000185] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The triazole heterocycle is a privileged scaffold in medicinal chemistry, since its structure is present in a large number of biologically active molecules, including several drugs currently in the market. Due to their vast applications, a wide variety of methods are described for their preparation, such as the 1,3-dipolar cycloaddition and processes involving diazo compounds and diazo transfer reactions. Considering the significant number of contributions from our research group to this chemistry in recent decades, in this account we discuss both the development of new methods for the synthesis of 1,2,3-triazoles and the preparation of new triazole-functionalized biologically active molecules using classical approaches.
Collapse
Affiliation(s)
- Luana da S M Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Carolina G S Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Adriane A P Amaral
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| |
Collapse
|
36
|
Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg Chem 2020; 103:104133. [PMID: 32745759 DOI: 10.1016/j.bioorg.2020.104133] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022]
Abstract
A series of benzothiazole/isatin linked to 1,2,3-triazole moiety and terminal sulpha drugs 5a-e and 6a-e were synthesized and evaluated for cytotoxic activity against a panel of cancer cell lines. The novel compounds showed variable IC50 range of activity and some of them were potent compared to reference drug. The promising compounds were subjected as postulated the mimicry proposal for quinazoline-based EGFR inhibitors for their inhibitory profile against EGFR TK enzyme. That data obtained revealed that most of these compounds were potent EGFR TK inhibitors at nanomolar concentrations. Among these, compounds 5a and 5b showed more potent activity on EGFR compared to erlotinib (IC50 103 and 104 versus 67.6 nM). Based upon the results, molecular docking analysis was performed on EGFR receptor and proved the strong contribution of fragments; benzothiazole, isatin, and triazole to the binding ATP pocket. When these selected compounds 5a and 5b were tested in an HepG2 model, they could effectively inhibited tumor growth, strongly induced cancer cell apoptosis, and suppressed cell cycle progression leading to DNA fragmentation. Well-DMET profile of the most active derivatives was presented and compared to the reference drugs. Taken together, we introduced novel triazole-sulpha drug hybrid for the first time as EGFR inhibitors and the results of our studies indicate that the newly discovered inhibitors have significant potential for anticancer treatment.
Collapse
|
37
|
Batra N, Rajendran V, Wadi I, Lathwal A, Dutta RK, Ghosh PC, Gupta RD, Nath M. Synthesis, characterization, and antiplasmodial efficacy of sulfonamide‐appended [1,2,3]‐triazoles. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neha Batra
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Vinoth Rajendran
- Department of BiochemistryUniversity of Delhi South Campus New Delhi India
| | - Ishan Wadi
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Ankit Lathwal
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Roshan Kumar Dutta
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Prahlad C. Ghosh
- Department of BiochemistryUniversity of Delhi South Campus New Delhi India
| | - Rinkoo D. Gupta
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Mahendra Nath
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| |
Collapse
|
38
|
El Malah T, Nour HF, Satti AAE, Hemdan BA, El-Sayed WA. Design, Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers. Molecules 2020; 25:E790. [PMID: 32059480 PMCID: PMC7071105 DOI: 10.3390/molecules25040790] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/03/2022] Open
Abstract
Bacterial resistance remains a significant threat and a leading cause of death worldwide, despite massive attempts to control infections. In an effort to develop biologically active antibacterial and antifungal agents, six novel aryl-substituted-1,2,3-triazoles linked to carbohydrate units were synthesized through the Cu(I)-catalyzed azide-alkyne cycloaddition CuAAC of substituted-arylazides with a selection of alkyne-functionalized sugars. The chemical structures of the new derivatives were verified using different spectroscopic techniques. The novel clicked 1,2,3-triazoles were evaluated for in vitro antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, and the obtained results were compared with the activity of the reference antibiotic "Ampicillin". Likewise, in vitro antifungal activity of the new 1,2,3-triazoles was investigated against Candida albicans and Aspergillus niger using "Nystatin" as a reference drug. The results of the biological evaluation pointed out that Staphylococcus aureus was more susceptible to all of the tested compounds than other examined microbes. In addition, some tested compounds exhibited promising antifungal activity.
Collapse
Affiliation(s)
- Tamer El Malah
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
| | - Hany F. Nour
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
| | - Amira A. E. Satti
- Chemistry Department, Faculty of Science and Arts in Qurayat, Jouf University, P.O. Box 77425 Qurayat, Saudi Arabia;
- Chemistry Department, College of Science, Sudan University of Science and Technology, P.O. Box 11116 Khartoum, Sudan
| | - Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, P.O. Box 781039 Assam, India
| | - Wael A. El-Sayed
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
- Department of Chemistry, College of Science, Qassim University, P.O. Box 51452 Buraidah, Saudi Arabia
| |
Collapse
|
39
|
Ramazani A, Sadighian H, Gouranlou F, Joo SW. Syntheses and Biological Activities of triazole-based Sulfonamides. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191021115023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:The triazole and sulfonamide compounds are known as biologically active agents that were employed for medicinal applications. These compounds were obtained in different forms by a variety of techniques to vast ranges of applications. The broad biological properties of these compounds have encouraged researchers to design and synthesize triazole-based sulfonamide derivatives as compounds with potential biological activity. In this review, we summarized the synthetic procedures of triazole-based sulfonamide compounds together with their biological activities during the last two decades.
Collapse
Affiliation(s)
- Ali Ramazani
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hamed Sadighian
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Farideh Gouranlou
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran
| | - Sang W. Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
40
|
Abstract
The scientific community worldwide has realized that malaria elimination will not be possible without development of safe and effective transmission-blocking interventions. Primaquine, the only WHO recommended transmission-blocking drug, is not extensively utilized because of the toxicity issues in G6PD deficient individuals. Therefore, there is an urgent need to develop novel therapeutic interventions that can target malaria parasites and effectively block transmission. But at first, it is imperative to unravel the existing portfolio of transmission-blocking drugs. This review highlights transmission-blocking potential of current antimalarial drugs and drugs that are in various stages of clinical development. The collective analysis of the relationships between the structure and the activity of transmission-blocking drugs is expected to help in the design of new transmission-blocking antimalarials.
Collapse
|
41
|
Luxmi R, Kaushik CP, Kumar D, Kumar K, Pahwa A, Sangwan J, Chahal M. A convenient synthesis and crystal structure of disubstituted 1,2,3-triazoles having ether functionality. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1672744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - C. P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Devinder Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Manisha Chahal
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
42
|
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019; 27:3511-3531. [PMID: 31300317 PMCID: PMC7185471 DOI: 10.1016/j.bmc.2019.07.005] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
The 1,2,3-triazole ring is a major pharmacophore system among nitrogen-containing heterocycles. These five-membered heterocyclic motifs with three nitrogen heteroatoms can be prepared easily using 'click' chemistry with copper- or ruthenium-catalysed azide-alkyne cycloaddition reactions. Recently, the 'linker' property of 1,2,3-triazoles was demonstrated, and a novel class of 1,2,3-triazole-containing hybrids and conjugates was synthesised and evaluated as lead compounds for diverse biological targets. These lead compounds have been demonstrated as anticancer, antimicrobial, anti-tubercular, antiviral, antidiabetic, antimalarial, anti-leishmanial, and neuroprotective agents. The present review summarises advances in lead compounds of 1,2,3-triazole-containing hybrids, conjugates, and their related heterocycles in medicinal chemistry published in 2018. This review will be useful to scientists in research fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Khurshed Bozorov
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China; Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan.
| | - Jiangyu Zhao
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| | - Haji A Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| |
Collapse
|
43
|
Wadi I, Prasad D, Batra N, Srivastava K, Anvikar AR, Valecha N, Nath M. Targeting Asexual and Sexual Blood Stages of the Human Malaria Parasite P. falciparum with 7-Chloroquinoline-Based 1,2,3-Triazoles. ChemMedChem 2019; 14:484-493. [PMID: 30609264 DOI: 10.1002/cmdc.201800728] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Novel 4-amino-7-chloroquinoline-based 1,2,3-triazole hybrids were synthesised in good yields by CuI -catalysed Huisgen 1,3-dipolar cycloaddition reactions of 2-azido-N-(7-chloroquinolin-4-ylaminoalkyl)acetamides with various terminal alkynes. These new hybrids were screened in vitro against asexual blood stages of the chloroquine-sensitive 3D7 strain of P. falciparum. The most active compounds were further screened against asexual and sexual stages (gametocytes) of the chloroquine-resistant RKL-9 strain of P. falciparum. Although all compounds were less potent than chloroquine against the 3D7 strain, the three best compounds were appreciably more active than chloroquine against the RKL-9 strain, displaying IC50 values of <100 nm, with one of them having an IC50 of 2.94 nm. Further, the lead compounds were gametocytocidal with IC50 values in the micromolar range, and were observed to induce morphological deformations in mature gametocytes. Most compounds demonstrated little or no cytotoxicity and exhibited good selectivity indices. The most active compounds represent promising candidates for further evaluation of their schizonticidal and gametocytocidal potential.
Collapse
Affiliation(s)
- Ishan Wadi
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Davinder Prasad
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Neha Batra
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Kumkum Srivastava
- Parasitology Division, Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Anupkumar R Anvikar
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Neena Valecha
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Mahendra Nath
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
44
|
Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem 2019; 166:206-223. [PMID: 30711831 DOI: 10.1016/j.ejmech.2019.01.047] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
Malaria, caused by protozoan parasites of the genus Plasmodium especially by the most prevalent parasite Plasmodium falciparum, represents one of the most devastating and common infectious disease globally. Nearly half of the world population is under the risk of being infected, and more than 200 million new clinical cases with around half a million deaths occur annually. Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance, so it's imperative to develop new antimalarials with great potency against both drug-susceptible and drug-resistant malaria. Triazoles, bearing a five-membered heterocyclic ring with three nitrogen atoms, exhibit promising in vitro antiplasmodial and in vivo antimalarial activities. Moreover, several triazole-based drugs have already used in clinics for the treatment of various diseases, demonstrating the excellent pharmaceutical profiles. Therefore, triazole derivatives have the potential for clinical deployment in the control and eradication of malaria. This review covers the recent advances of triazole derivatives especially triazole hybrids as potential antimalarials. The structure-activity relationship is also discussed to provide an insight for rational designs of more efficient antimalarial candidates.
Collapse
|