1
|
Liu Z, Kong Z, Cui S, Liu L, Wang F, Wang Y, Wang S, Zang SQ. Electrocatalytic Mechanism of Defect in Spinels for Water and Organics Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302216. [PMID: 37259266 DOI: 10.1002/smll.202302216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.
Collapse
Affiliation(s)
- Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shasha Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fen Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Nguyen ATN, Kim M, Shim JH. Controlled synthesis of trimetallic nitrogen-incorporated CoNiFe layered double hydroxide electrocatalysts for boosting the oxygen evolution reaction. RSC Adv 2022; 12:12891-12901. [PMID: 35496332 PMCID: PMC9044820 DOI: 10.1039/d2ra00919f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
The development of non-precious trimetallic electrocatalysts exhibiting high activity and stability is a promising strategy for fabricating efficient electrocatalysts for the oxygen evolution reaction (OER). In this study, trimetallic nitrogen-incorporated CoNiFe (N-CoNiFe) was produced to solve the low OER efficiency using a facile co-precipitation method in the presence of ethanolamine (EA) ligands. A series of CoNiFe catalysts at different EA concentrations were also investigated to determine the effects of the ligand in the co-precipitation of a trimetallic system. The introduction of an optimized EA concentration (20 mM) improved the electrocatalytic performance of N-CoNiFe dramatically, with an overpotential of 318 mV at 10 mA cm-2 in 1.0 M KOH and a Tafel slope of 72.2 mV dec-1. In addition, N-CoNiFe shows high durability in the OER process with little change in the overpotential (ca. 16.0 mV) at 10 mA cm-2 after 2000 cycles, which was smaller than that for commercial Ir/C (38.0 mV).
Collapse
Affiliation(s)
- Anh Thi Nguyet Nguyen
- Department of Chemistry and Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Minji Kim
- Department of Chemistry and Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Jun Ho Shim
- Department of Chemistry and Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| |
Collapse
|
3
|
Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Kazimova N, Ping K, Alam M, Danilson M, Merisalu M, Aruväli J, Paiste P, Käärik M, Mikli V, Leis J, Tammeveski K, Starkov P, Kongi N. Shungite-derived graphene as a carbon support for bifunctional oxygen electrocatalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Li X, Wang Y, Wang J, Da Y, Zhang J, Li L, Zhong C, Deng Y, Han X, Hu W. Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO 3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003414. [PMID: 32815243 DOI: 10.1002/adma.202003414] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Exploring earth-abundant and highly efficient electrocatalysts is critical for further development of water electrolyzer systems. Integrating bifunctional catalytically active sites into one multi-component might greatly improve the overall water-splitting performance. In this work, amorphous NiO nanosheets coupled with ultrafine Ni and MoO3 nanoparticles (MoO3 /Ni-NiO), which contains two heterostructures (i.e., Ni-NiO and MoO3 -NiO), is fabricated via a novel sequential electrodeposition strategy. The as-synthesized MoO3 /Ni-NiO composite exhibits superior electrocatalytic properties, affording low overpotentials of 62 mV at 10 mA cm-2 and 347 mV at 100 mA cm-2 for catalyzing the hydrogen and the oxygen evolution reaction (HER/OER), respectively. Moreover, the MoO3 /Ni-NiO hybrid enables the overall alkaline water-splitting at a low cell voltage of 1.55 V to achieve 10 mA cm-2 with outstanding catalytic durability, significantly outperforming the noble-metal catalysts and many materials previously reported. Experimental and theoretical investigations collectively demonstrate the generated Ni-NiO and MoO3 -NiO heterostructures significantly reduce the energetic barrier and act as catalytically active centers for selective HER and OER, synergistically accelerating the overall water-splitting process. This work helps to fundamentally understand the heterostructure-dependent mechanism, providing guidance for the rational design and oriented construction of hybrid nanomaterials for diverse catalytic processes.
Collapse
Affiliation(s)
- Xiaopeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yang Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yumin Da
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Cheng Zhong
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Processing Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
6
|
Maruthapandian V, Muthurasu A, Dekshinamoorthi A, Aswathy R, Vijayaraghavan S, Muralidharan S, Saraswathy V. Electrochemical Cathodic Treatment of Mild Steel as a Host for Ni(OH)
2
Catalyst for Oxygen Evolution Reaction in Alkaline Media. ChemElectroChem 2019. [DOI: 10.1002/celc.201900655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viruthasalam Maruthapandian
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute Karaikudi- 630 003, Tamilnadu India
- Academy of Scientific and Innovative Research (AcSIR) Karaikudi- 630 003, Tamilnadu India
| | - Alagan Muthurasu
- Department of BIN Convergence Technology Chonbuk National University Republic of Korea
| | - Amuthan Dekshinamoorthi
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute Karaikudi- 630 003, Tamilnadu India
| | - Raghunandanan Aswathy
- Academy of Scientific and Innovative Research (AcSIR) Karaikudi- 630 003, Tamilnadu India
| | - Saranyan Vijayaraghavan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute Karaikudi- 630 003, Tamilnadu India
| | - Srinivasan Muralidharan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute Karaikudi- 630 003, Tamilnadu India
| | - Velu Saraswathy
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute Karaikudi- 630 003, Tamilnadu India
- Academy of Scientific and Innovative Research (AcSIR) Karaikudi- 630 003, Tamilnadu India
| |
Collapse
|