1
|
Yang J, Zhang K, Zhao Y, Song Y, Wu Y, Li H. Reactive Fluorescent and Colorimetric Probe for Highly Selective and Sensitive Detection of Hg 2+ in Real Water Samples. J Fluoresc 2024:10.1007/s10895-024-03992-3. [PMID: 39425836 DOI: 10.1007/s10895-024-03992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Construction of efficient chemosensors for highly specific and sensitive detection of mercury ions remains a great challenge. In this work a highly selective and sensitive probe CY was designed and synthesized by using coumarin fluorophore as the matrix and thioacetal moiety as the reactive recognition site for Hg2+. By virtue of the thiophilicity of Hg2+, probe CL could be hydrolyzed to deprotect and the thioacetal was transformed to the acyl group after the addition of Hg2+, the blue-green fluorescence was quenched and meanwhile the solution changed from light green to yellow. The detection limit of probe CY for Hg2+ was as low as 6.8 nM, and it could completely react with Hg2+ within 3 min. Moreover, probe CY exhibited good resistance against interference from competitive metal ions and biothiols, high stability in pH 1-11 and applicability for fluorogenic and chromogenic dual-modal detection of Hg2+ in real water samples over a broad range of pH 5-10.
Collapse
Affiliation(s)
- Jiarui Yang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Kaiqiang Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yong Zhao
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, Anhui Province, 232038, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yihan Wu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
2
|
Fang S, Swamy KMK, Zan WY, Yoon J, Liu S. An excimer process induced a turn-on fluorescent probe for detection of ultra-low concentration of mercury ions. J Mater Chem B 2024; 12:8376-8382. [PMID: 39109420 DOI: 10.1039/d4tb00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The accumulation of mercury pollution in plants can induce severe injury to human beings. It is a great challenge to monitor ultra-low concentrations of mercury in complicated matrixes. In this study, we successfully developed a strategy via Hg2+-triggered naphthalene-based fluorescent probe 1, which formed excimer that subsequently emitted fluorescence for the successful detection of ultra-low concentrations of Hg2+. The coordination of N and S atoms with Hg2+ facilitated the formation of excimer from the naphthalene-conjugated planes that were in sufficiently close proximity. Suppression of CN bond rotation also induced the chelation-enhanced fluorescence (CHEF) effect, and the cumulative result of these effects was obvious fluorescent enhancement. Compared with probe 2, the other key factor for detection of Hg2+ is that the electrons of the hydroxyl group can easily transfer to a naphthalene moiety, resulting in an augmented π-electron density that enhanced the π-π stacking of the naphthalene-conjugated excimer. After detailed spectral studies and mechanism discussions, it was realized that probe 1 was able to detect ultra-low concentrations of Hg2+ in PBS buffer solution. The detection limit was calculated to be 1.98 nM. On account of the excellent performances, the probe was successfully applied in monitoring Hg2+ in water and pea sprouts with the potential for application as an advanced warning of contamination.
Collapse
Affiliation(s)
- Shujing Fang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Wen-Yan Zan
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
3
|
Li H, Li J, Pan Z, Zheng T, Song Y, Zhang J, Xiao Z. Highly selective and sensitive detection of Hg 2+ by a novel fluorescent probe with dual recognition sites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122379. [PMID: 36682255 DOI: 10.1016/j.saa.2023.122379] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
A novel thionocarbonate-coumarin-thiourea triad-based probe with dual recognition sites for sensing mercury (Hg2+) ion was developed. The synthesized probe possessed both fluorogenic ("off-on") and chromogenic (from colorless to blackish brown) sensing performance towards Hg2+ ions. The fluorescence intensity was increased by 70 fold after the addition of Hg2+. As expected, the probe exhibited excellent selectivity and sensitivity for Hg2+ compared to other common competitive metal ions. The fluorescence intensity of the probe improved linearly with the increase of the concentration of Hg2+ (0-40 μM). Also, the minimum limit of detection (LOD) of the synthesized probe was 0.12 μM. Considering the importance of test feasibility in the harsh environment, the developed probe was applicable for detecting Hg2+ ions over a broad working pH range of 3-11. It is reliable and qualifies for the quantitative determination of Hg2+ concentrations in actual water samples. Finally, the probe achieved the bioimaging performance of Hg2+ in living cells and plants with good biocompatibility.
Collapse
Affiliation(s)
- Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Jiayin Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhixiu Pan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhongwen Xiao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| |
Collapse
|
4
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
5
|
Sawminathan S, Munusamy S, Jothi D, Iyer SK. Phenanthridine‐Based Donor/Acceptor Fluorescent Dyes: Synthesis, Photophysical Properties and Fluorometric Sensing of Biogenic Primary Amines. ChemistrySelect 2021. [DOI: 10.1002/slct.202004040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sathish Sawminathan
- Chemistry department School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Sathishkumar Munusamy
- Institute of chemical biology and nanomedicine State key laboratory of chemo/Bio-sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P.R.China
| | - Dhanapal Jothi
- Chemistry department School of Advanced Sciences Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | | |
Collapse
|