1
|
Namvari M, Chakrabarti BK. Electrophoretic deposition of MXenes and their composites: Toward a scalable approach. Adv Colloid Interface Sci 2024; 331:103208. [PMID: 38852471 DOI: 10.1016/j.cis.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Over the past decade, MXenes, a novel class of advanced 2D nanomaterials, have manifested as a prominent electrode material with diverse applications. Their unique layered structures, negative zeta potential, charge carrier mobility, mechanical properties, adjustable bandgap, hydrophilicity, metallic nature, and surface chemistry collectively contribute to the abundance of active redox sites on the surface and a reduction in the ion diffusion pathway. Despite such promising attributes of MXene, challenges like aggregation and restacking reduce the accessibility of active surface sites for electrolyte ions. Amongst approaches such as surface functionalization, addition of spacers, or facilitating pore formation, the electrophoretic deposition (EPD) of MXene on substrates has commenced to gain attention aiming to mitigate these issues. More importantly, it offers large-scale film fabrication in a short time without the necessity of using a charge-inducing agent. This review compiles recent advances in the use of EPD for preparing MXene-based electrodes and discusses the effect of EPD parameters on the relevant device performance. Recognition is given to understanding the relation of MXene colloidal composition in aqueous (and in some cases, non-aqueous) dispersions, deposition times, and other relevant parameters on respective device performances. In conclusion, the potential avenues offered by MXenes for future research on electrode materials are emphasized.
Collapse
Affiliation(s)
- Mina Namvari
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
| | - Barun Kumar Chakrabarti
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
2
|
Patil AM, Moon S, Roy SB, Ha J, Chodankar NR, Dubal DP, Jadhav AA, Guan G, Kang K, Jun SC. Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301153. [PMID: 37154199 DOI: 10.1002/smll.202301153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Ultra-high energy density battery-type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α-/γ-MnS@Cox Sy core-shell heterostructure constrained in the sulphur (S), nitrogen (N) co-doped carbon (C) metal-organic frameworks (MOFs) derived nanosheets (α-/γ-MnS@Cox Sy @N, SC) have been developed. The coordination bonding among Cox Sy , and α-/γ-MnS nanoparticles at the interfaces and the π-π stacking interactions developed across α-/γ-MnS@Cox Sy and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom-enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core-shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The α-/γ-MnS@Cox Sy @N, SC electrode exhibits an excellent specific capacity of 277 mA hg-1 and cycling stability over 23 600 cycles. A quasi-solid-state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer-by-layer deposited multi-walled carbon nanotube/Ti3 C2 TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg-1 (1.62 mWh cm-3 ) at a power of 933 W kg-1 and 92% capacitance retention over 5000 cycles.
Collapse
Affiliation(s)
- Amar M Patil
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Sunil Moon
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sanjib Baran Roy
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Jisang Ha
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Nilesh R Chodankar
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia
| | - Arti A Jadhav
- Department of Physics, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Guoqing Guan
- Section of Renewable Energy, Institute of Regional Innovation, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Keonwook Kang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong Chan Jun
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| |
Collapse
|
3
|
Xia C, Luo Y, Bin X, Gao B, Que W. Rational design of flower-like MnO 2/Ti 3C 2T xcomposite electrode for high performance supercapacitors. NANOTECHNOLOGY 2023; 34:255602. [PMID: 36962973 DOI: 10.1088/1361-6528/acc744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Combining the new two-dimensional conductive MXene with transition metal oxide to build composite structure is a promising path to improve the conductivity of metal oxide. However, a critical challenge still remains in how to achieve a good combination of MXene and metal oxide. Herein, we develop a facile hydrothermal route to synthesize the MnO2/Ti3C2Txcomposite electrode for supercapacitors by synergistically coupling MnO2nanowires with Ti3C2TxMXene nanoflakes. Compared with the pure MnO2electrode, the morphology of the MnO2/Ti3C2Txcomposite electrode changes from nanowires to nanoflowers. Moreover, the overall conductivity and electrochemical performance of the composite electrode are greatly improved due to an addition of Ti3C2TxMXene. The specific capacitance of the MnO2/Ti3C2Txcomposite electrode achieves 210.8 F·g-1at a scan rate of 2 mV·s-1, while that of the pure MnO2electrode is only 55.2 F·g-1. Furthermore, the specific capacitance of the MnO2/Ti3C2Txcomposite electrode still can remain at 97.2% even after 10 000 charge-discharge cycles, revealing an excellent cycle stability. The synthesis strategy of this work can pave the way for the research and practical application of the electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Chenji Xia
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Yijia Luo
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Xiaoqing Bin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Bowen Gao
- School of Mechanical and Construction Engineering, Taishan University, Tai'an 271021, Shandong, People's Republic of China
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| |
Collapse
|
4
|
Geng Z, Chen W, Qiu Z, Xu H, Pan D, Chen S. Hierarchical V 4C 3T X@NiO-reduced graphene oxide heterostructure hydrogels and defective reduced graphene oxide hydrogels as free-standing anodes and cathodes for high-performance asymmetric supercapacitors. Phys Chem Chem Phys 2023; 25:9140-9151. [PMID: 36939188 DOI: 10.1039/d3cp00595j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Asymmetric supercapacitors (ASCs) based on a battery-type anode and a capacitive-type cathode have been attracting extensive interest because of their high energy density. Herein, NiO nanosheets are hydrothermally deposited onto a V4C3TX substrate, which are then assembled into a 3D porous heterostructure hydrogel through a graphene oxide-assisted self-convergence hydrothermal process at low temperatures. The resultant hierarchical V4C3TX@NiO-RGO heterostructure hydrogel exhibits an ultrahigh specific capacitance of up to 1014.5 F g-1 at 1 A g-1. In addition, a defective reduced graphene oxide (DRGO) hydrogel is prepared using a cost-effective hydrothermal procedure followed by cobalt-catalyzed gasification, which shows a higher specific capacitance (258 F g-1 at 1 A g-1) than the untreated RGO hydrogel (176 F g-1). These two electrodes are then assembled into an ASC; the device features a stable operating voltage of 1.8 V, a maximum energy density of 86.22 W h kg-1 at 900 W kg-1, and excellent cycling stability at 96.4% capacitance retention after 10 000 cycles at 10 A g-1. The results from this work highlight the unique potential of MXene-based materials for the construction of high-performance ASCs.
Collapse
Affiliation(s)
- Ziyu Geng
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weiwen Chen
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dingjie Pan
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
5
|
Flexible Ti3C2Tx MXene/polypyrrole composite films for high-performance all-solid asymmetric supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141818] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Agarwal A, Sankapal BR. Lamellar structured Ni 3P 2O 8: first-ever use to design 1.8 V operated flexible all-solid-state symmetric supercapacitor. Dalton Trans 2022; 51:13878-13891. [PMID: 36040295 DOI: 10.1039/d2dt02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing demand for microelectronic devices necessitates the development of highly flexible energy storage technologies with a wide operating voltage. Thus, flexible electrodes and their devices with the requisite mechanical and electrochemical characteristics have prime importance. In this regard, the present article demonstrates the feasibility of designing a flexible all-solid-state supercapacitor using a chemically grown Ni3P2O8 lamellar microstructured electrode embedded with carboxy methyl cellulose-Na2SO4 (CMC-Na2SO4) gel electrolyte. The formed symmetric device impressively exhibited a maximum working voltage window of 1.8 V with a high specific energy of 44.7 W h kg-1 and specific power of 3.3 kW kg-1 along with prolonged cycle life. Also, the device's high deformation tolerance (95%) when bent at 170° with a flashing light-emitting diode (LED) working demonstration showcases its viability for advanced flexible energy storage applications.
Collapse
Affiliation(s)
- Akanksha Agarwal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur-440010, Maharashtra, India.
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur-440010, Maharashtra, India.
| |
Collapse
|
7
|
Chen W, Hao C, Qiu Z, Zhang X, Xu H, Yu B, Chen S. High-Energy-Density Asymmetric Supercapacitor Based on Free-Standing Ti 3C 2T X@NiO-Reduced Graphene Oxide Heterostructured Anode and Defective Reduced Graphene Oxide Hydrogel Cathode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19534-19546. [PMID: 35446552 DOI: 10.1021/acsami.2c02507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rational design of an asymmetric supercapacitor (ASC) with an expanded operating voltage window has been recognized as a promising strategy to maximize the energy density of the device. Nevertheless, it remains challenging to have electrode materials that feature good electrical conductivity and high specific capacitance. Herein, a 3D layered Ti3C2TX@NiO-reduced graphene oxide (RGO) heterostructured hydrogel was successfully synthesized by uniform deposition of NiO nanoflowers onto Ti3C2TX nanosheets, and the heterostructure was assembled into a 3D porous hydrogel through a hydrothermal GO-gelation process at low temperatures. The resultant Ti3C2TX@NiO-RGO heterostructured hydrogel exhibited an ultrahigh specific capacitance of 979 F g-1 at 0.5 A g-1, in comparison to that of Ti3C2TX@NiO (623 F g-1) and Ti3C2TX (112 F g-1). Separately, a defective RGO (DRGO) hydrogel was found to exhibit a drastic increase in specific capacitance, compared to untreated RGO (261 vs 178 F g-1 at 0.5 A g-1), owing to abundant mesopores. These two materials were then used as free-standing anode and cathode to construct an ASC, which displayed a large operating voltage (1.8 V), a high energy density (79.02 Wh kg-1 at 450 W kg-1 and 45.68 Wh kg-1 at 9000 W kg-1), and remarkable cycling stability (retention of 95.6% of the capacitance after 10,000 cycles at 10 A g-1). This work highlights the unique potential of Ti3C2TX-based heterostructured hydrogels as viable electrode materials for ASCs.
Collapse
Affiliation(s)
- Weiwen Chen
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunfeng Hao
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingzhe Yu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
8
|
Zhao Z, Qian X, Zhu H, Miao Y, Ye H. Synthesis of Accordion‐like Ti
3
CN MXene and its Structural Stability in Aqueous Solutions and Organic Solvents. ChemistrySelect 2022. [DOI: 10.1002/slct.202104176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zefeng Zhao
- School of Materials Science & Engineering Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| | - Xukun Qian
- School of Materials Science & Engineering Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| | - Hailin Zhu
- School of Materials Science & Engineering Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
| | - Yigao Miao
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| | - Hua Ye
- School of Engineering Lishui University Lishui 323000 Zhejiang P.R. China
| |
Collapse
|
9
|
Wei Y, Luo W, Li X, Lin Z, Hou C, Ma M, Ding J, Li T, Ma Y. PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139874] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Quan Y, Wang S, Liu P, Shen Z, Wang Q. A Flexible Asymmetric NaFePO
4
/Carbon Cloth Supercapacitor Using Crosslinked Polyacrylate Gel as Electrolyte. ChemistrySelect 2021. [DOI: 10.1002/slct.202102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufei Quan
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an 710021 People's Republic of China
| | - Sumin Wang
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an 710021 People's Republic of China
| | - Pan Liu
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an 710021 People's Republic of China
| | - Zhiruo Shen
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an 710021 People's Republic of China
| | - Qiguan Wang
- School of Materials and Chemical Engineering Xi'an Technological University Xi'an 710021 People's Republic of China
| |
Collapse
|