1
|
Benny AT, Radhakrishnan EK. Assessing the antibiofilm activity of flavonol esters against Pseudomonas aeruginosa PAO1 biofilm: an in vitro, molecular docking, and molecular dynamics study. J Biomol Struct Dyn 2025; 43:813-829. [PMID: 39737751 DOI: 10.1080/07391102.2023.2283811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/24/2023] [Indexed: 01/01/2025]
Abstract
Pseudomonas aeruginosa is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of P. aeruginosa biofilm treated with esters of flavonols were evaluated. Pyocyanin, cell surface hydrophobicity, LasA protease estimation, rhamnolipid estimation, and pyoverdine estimation were performed to evaluate the antivirulence activities of the test compounds against P. aeruginosa. Previous studies on the antivirulence activity of flavonoids against P. aeruginosa demonstrate that even if they can inhibit bacterial growth, relatively high concentrations of the compound are generally required for the inhibition of virulence factors. The esters showed more than 40% inhibition in all the tested virulence factors at their sub minimum inhibitory concentration. The gene expression studies of selected esters toward lasB and rhlA genes show downregulation of rhlA which suggests the inhibition in biofilm formation through rhamnolipid inhibition, quorum sensing inhibition, or biofilm formation inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Ethiraj K Radhakrishnan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Benny AT, Thamim M, Easwaran N, Gothandam KM, Thirumoorthy K, Radhakrishnan EK. Attenuation of Quorum Sensing Mediated Virulence Factors and Biofilm Formation in Pseudomonas Aeruginosa PAO1 by Substituted Chalcones and Flavonols. Chem Biodivers 2024; 21:e202400393. [PMID: 38946224 DOI: 10.1002/cbdv.202400393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Flavonoids epitomize structural scaffolds in many biologically active synthetic and natural compounds. They showcase a diverse spectrum of biological activities including anticancer, antidiabetic, antituberculosis, antimalarial, and antibiofilm activities. The antibiofilm activity of a series of new chalcones and flavonols against clinically significant Pseudomonas aeruginosa PAO1 strain was studied. Antivirulence activities were screened by analysing the effect of compounds on the production of virulence factors like pyocyanin, LasA protease, cell surface hydrophobicity, and rhamnolipid. The best ligands towards the quorum sensing proteins LasR, RhlR, and PqsR were recognised using a molecular docking study. The gene expression in P. aeruginosa after treatment with test compounds was evaluated on quorum sensing genes including rhlA, lasB, and pqsE. The antibiofilm potential of chalcones and flavonols was confirmed by the efficient reduction in the production of virulence factors and downregulation of gene expression.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Masthan Thamim
- Department of Chemistry, School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, 466114
| | - Nalini Easwaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014
| | | | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | | |
Collapse
|
3
|
Benny AT, Thamim M, Srivastava P, Suresh S, Thirumoorthy K, Rangasamy L, S K, Easwaran N, Radhakrishnan EK. Synthesis and study of antibiofilm and antivirulence properties of flavonol analogues generated by palladium catalyzed ligand free Suzuki-Miyaura coupling against Pseudomonas aeruginosa PAO1. RSC Adv 2024; 14:12278-12293. [PMID: 38633488 PMCID: PMC11019961 DOI: 10.1039/d3ra08617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The Suzuki-Miyaura coupling is one of the ubiquitous method for the carbon-carbon bond-forming reactions in organic chemistry. Its popularity is due to its ability to undergo extensive coupling reactions to generate a broad range of biaryl motifs in a straightforward manner displaying a high level of functional group tolerance. A convenient and efficient synthetic route to arylate different substituted flavonols through the Suzuki-Miyaura cross-coupling reaction has been explained in this study. The arylated products were acquired by the coupling of a variety of aryl boronic acids with flavonols under Pd(OAc)2 catalyzed reaction conditions in a ligand-free reaction strategy. Subsequently, the antibiofilm and antivirulence properties of the arylated flavonols against Pseudomonas aeruginosa PAO1 were studied thoroughly. The best ligands for quorum sensing proteins LasR, RhlR, and PqsR were identified using molecular docking study. These best fitting ligands were then studied for their impact on gene expression level of P. aeruginosa by RT-PCR towards quorum sensing genes lasB, rhlA, and pqsE. The downregulation in the gene expression with the effect of synthesized flavonols endorse the antibiofilm efficiency of the compounds.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Masthan Thamim
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | | | - Sindoora Suresh
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology Vellore-632014 India
| | - Karthikeyan S
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology Vellore-632014 India
| | - Nalini Easwaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology VIT Vellore-632014 India
| | | |
Collapse
|
4
|
Yan Q, Meng T, Luo W, Sun L, Zeng Q, Xu H. Co-assembly Behaviors of Flavonol Derivatives Induced by a Pyridine Derivative on HOPG via Hydrogen Bonding and Van der Waals Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8651-8656. [PMID: 35797253 DOI: 10.1021/acs.langmuir.2c01076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, two new flavonol derivatives, 2-(4-(dodecyloxy)phenyl)-3-hydroxyflavone (DHF) and 2-(3,5-bis(dodecyloxy)phenyl)-3-hydroxyflavone (BDHF), were synthesized to investigate the respective self-assembly behaviors at the liquid/solid interface by scanning tunneling microscopy. In addition, a linear pyridine derivative with acetylene groups called BisPy was added to regulate the assembly of DHF and BDHF, individually. However, only BDHF molecules successfully co-assembled into grid structures with BisPy molecules. Furthermore, the assembly and co-assembly behavior mechanism of flavonol derivatives and BisPy molecules were further studied by density functional theory calculations. This work will lay a foundation for investigating the self-assembly of flavonol derivatives and the co-assembly regulated by pyridine derivatives at the liquid-solid interface.
Collapse
Affiliation(s)
- Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Luo
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| |
Collapse
|