• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4592769)   Today's Articles (8891)   Subscriber (49318)
For: Stimberg VC, Bomer JG, van Uitert I, van den Berg A, Le Gac S. High yield, reproducible and quasi-automated bilayer formation in a microfluidic format. Small 2013;9:1076-1085. [PMID: 23139010 DOI: 10.1002/smll.201201821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/27/2012] [Indexed: 05/28/2023]
Number Cited by Other Article(s)
1
Mimura H, Osaki T, Takamori S, Nakao K, Takeuchi S. Lipid Bilayer Reformation Using the Wiping Blade for Improved Ion Channel Analysis. Anal Chem 2023;95:17354-17361. [PMID: 37968939 DOI: 10.1021/acs.analchem.3c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
2
Ensslen T, Behrends JC. A chip-based array for high-resolution fluorescence characterization of free-standing horizontal lipid membranes under voltage clamp. LAB ON A CHIP 2022;22:2902-2910. [PMID: 35839072 DOI: 10.1039/d2lc00357k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
3
Zhou P, He H, Ma H, Wang S, Hu S. A Review of Optical Imaging Technologies for Microfluidics. MICROMACHINES 2022;13:mi13020274. [PMID: 35208397 PMCID: PMC8877635 DOI: 10.3390/mi13020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
4
Lee HR, Lee Y, Oh SS, Choi SQ. Ultra-Stable Freestanding Lipid Membrane Array: Direct Visualization of Dynamic Membrane Remodeling with Cholesterol Transport and Enzymatic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e2002541. [PMID: 32924281 DOI: 10.1002/smll.202002541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/09/2020] [Indexed: 06/11/2023]
5
Misawa N, Osaki T, Takeuchi S. Membrane protein-based biosensors. J R Soc Interface 2019;15:rsif.2017.0952. [PMID: 29669891 DOI: 10.1098/rsif.2017.0952] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023]  Open
6
Heo P, Ramakrishnan S, Coleman J, Rothman JE, Fleury JB, Pincet F. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D-Printed Microfluidic Setup. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019;15:e1900725. [PMID: 30977975 DOI: 10.1002/smll.201900725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Indexed: 06/09/2023]
7
Shoji K, Kawano R. Microfluidic Formation of Double-Stacked Planar Bilayer Lipid Membranes by Controlling the Water-Oil Interface. MICROMACHINES 2018;9:mi9050253. [PMID: 30424186 PMCID: PMC6187563 DOI: 10.3390/mi9050253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/24/2022]
8
Schulze Greiving VC, de Boer HL, Bomer JG, van den Berg A, Le Gac S. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels. Electrophoresis 2017;39:496-503. [PMID: 29193178 DOI: 10.1002/elps.201700346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 01/19/2023]
9
Osaki T, Takeuchi S. Artificial Cell Membrane Systems for Biosensing Applications. Anal Chem 2016;89:216-231. [DOI: 10.1021/acs.analchem.6b04744] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
10
Tomoike F, Tonooka T, Osaki T, Takeuchi S. Repetitive formation of optically-observable planar lipid bilayers by rotating chambers on a microaperture. LAB ON A CHIP 2016;16:2423-2426. [PMID: 27256329 DOI: 10.1039/c6lc00363j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
11
Bright LK, Baker CA, Bränström R, Saavedra SS, Aspinwall CA. Methacrylate Polymer Scaffolding Enhances the Stability of Suspended Lipid Bilayers for Ion Channel Recordings and Biosensor Development. ACS Biomater Sci Eng 2016;1:955-963. [PMID: 26925461 PMCID: PMC4764998 DOI: 10.1021/acsbiomaterials.5b00205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
12
Teng W, Ban C, Hahn JH. Formation of lipid bilayer membrane in a poly(dimethylsiloxane) microchip integrated with a stacked polycarbonate membrane support and an on-site nanoinjector. BIOMICROFLUIDICS 2015;9:024120. [PMID: 26015832 PMCID: PMC4409621 DOI: 10.1063/1.4919066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
13
Czekalska MA, Kaminski TS, Jakiela S, Tanuj Sapra K, Bayley H, Garstecki P. A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. LAB ON A CHIP 2015;15:541-8. [PMID: 25412368 DOI: 10.1039/c4lc00985a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
14
del Rio Martinez JM, Zaitseva E, Petersen S, Baaken G, Behrends JC. Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015;11:119-125. [PMID: 25115837 DOI: 10.1002/smll.201402016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 06/03/2023]
15
Saha SC, Powl AM, Wallace BA, de Planque MRR, Morgan H. Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip. BIOMICROFLUIDICS 2015;9:014103. [PMID: 25610515 PMCID: PMC4288537 DOI: 10.1063/1.4905313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/19/2014] [Indexed: 05/16/2023]
16
Basit H, Gaul V, Maher S, Forster RJ, Keyes TE. Aqueous-filled polymer microcavity arrays: versatile & stable lipid bilayer platforms offering high lateral mobility to incorporated membrane proteins. Analyst 2015;140:3012-8. [DOI: 10.1039/c4an02317j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
17
Bomer JG, Prokofyev AV, van den Berg A, Le Gac S. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments. LAB ON A CHIP 2014;14:4461-4464. [PMID: 25284632 DOI: 10.1039/c4lc00921e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
18
Baker CA, Aspinwall CA. Emerging trends in precision fabrication of microapertures to support suspended lipid membranes for sensors, sequencing, and beyond. Anal Bioanal Chem 2014;407:647-52. [PMID: 25120184 DOI: 10.1007/s00216-014-8079-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
19
Tsuji Y, Kawano R, Osaki T, Kamiya K, Miki N, Takeuchi S. Droplet Split-and-Contact Method for High-Throughput Transmembrane Electrical Recording. Anal Chem 2013;85:10913-9. [DOI: 10.1021/ac402299z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA