1
|
He MQ, Ai Y, Hu W, Jia X, Wu L, Ding M, Liang Q. Dual-Functional Capping Agent-Mediated Transformation of Silver Nanotriangles to Silver Nanoclusters for Dual-Mode Biosensing. Anal Chem 2023; 95:6130-6137. [PMID: 37002208 DOI: 10.1021/acs.analchem.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
The localized surface plasmon resonance (LSPR) property, depending on the structure (morphology and assembly) of nanoparticles, is very sensitive to the environmental fluctuation. Retaining the colorimetric effect derived from the LSPR property while introducing new optical properties (such as fluorescence) that provide supplementary information is an effective means to improve the controllability in structures and reproducibility in optical properties. DNA as a green and low-cost etching agent has been demonstrated to effectively control the morphology and optical properties (the blue shift of the LSPR peak) of the plasmonic nanoparticles. Herein, taking silver nanotriangles (AgNTs) as a proof of concept, we report a novel strategy to induce precisely tunable LSPR and fluorescence-composited dual-mode signals by using mono-DNA first as an etching agent for etching the morphology of AgNTs and later as a template for synthesizing fluorescent silver nanoclusters (AgNCs). In addition, common templates for synthesizing AgNCs, such as l-glutathione and bovine serum albumin, were demonstrated to have the capability to serve as etching agents. More importantly, these biomolecules as dual-functional capping agents (etching agents and templates) follow the size-dependent rule: as the size of the thiolated biomolecule increases, the blue shift of the LSPR peak increases; at the same time, the fluorescence intensity increases. The enzyme that can change the molecular weight (size) of the biomolecular substrates (DNA, peptides, and proteins) through an enzymatic cleavage reaction was explored to regulate the LSPR and fluorescent properties of the resulting nanoparticles (by etching of AgNTs and synthesis of AgNCs), achieving excellent performance in detection of cancer-related proteases. This study can be expanded to other biopolymers to impact both fundamental nanoscience and applications and provide powerful new tools for bioanalytical biosensors and nanomedicine.
Collapse
Affiliation(s)
- Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaomeng Jia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Biomimetic synthesis of CuInS2 nanoparticles: Characterization, cytotoxicity, and application in quantum dots sensitized solar cells. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Chen K, Han H, Tuguntaev RG, Wang P, Guo W, Huang J, Gong X, Liang X. Applications and regulatory of nanotechnology‐based innovative
in vitro
diagnostics. VIEW 2020. [DOI: 10.1002/viw.20200091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kuan Chen
- Center for Medical Device Evaluation National Medical Products Administration Beijing China
| | - Houyu Han
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Ruslan G. Tuguntaev
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Peirong Wang
- Center for Medical Device Evaluation National Medical Products Administration Beijing China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Jiayu Huang
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Xiaoqun Gong
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Xing‐Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology of China Beijing China
- College of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
4
|
Xiong LH, Huang S, Huang Y, Yin F, Yang F, Zhang Q, Cheng J, Zhang R, He X. Ultrasensitive Visualization of Virus via Explosive Catalysis of an Enzyme Muster Triggering Gold Nano-aggregate Disassembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12525-12532. [PMID: 32106677 DOI: 10.1021/acsami.9b23247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensitive and accurate diagnosis of viral infection is important for human health and social safety. Herein, by means of explosive catalysis from an enzyme muster, a powerful naked-eye readout platform has been successfully constructed for ultrasensitive immunoassay of viral entities. Liposomes were used to encapsulate multiple enzymes into an active unit. In addition, its triggered rupture could boost the disassembly of gold nano-aggregates that were cross-linked by peptides with opposite charges. As a result, plasmonically colorimetric signals were rapidly generated for naked-eye observation. Further harnessing the immunocapture, enterovirus 71 (EV71), a class of highly infective virus, was sensitively assayed with a detection limit down to 16 copies/μL. It is superior to the single enzyme-anchored immunoassay system. Most importantly, the colorimetric assay was demonstrated with 100% clinical accuracy, displaying strong anti-interference capability. It is expectable that this sensitive, accurate, and convenient strategy could provide a prospective alternative for viral infection analysis, especially in resource-constrained settings.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Suibin Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
|
6
|
He MQ, Chen S, Yao K, Meng J, Wang K, Yu YL, Wang JH. Precisely Tuning LSPR Property via “Peptide-Encoded” Morphological Evolution of Gold Nanorods for Quantitative Visualization of Enzyme Activity. Anal Chem 2019; 92:1395-1401. [DOI: 10.1021/acs.analchem.9b04573] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meng-Qi He
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Kan Yao
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jie Meng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Kun Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
7
|
Chen P, Huang K, Dai R, Sawyer E, Sun K, Ying B, Wei X, Geng J. Sensitive CVG-AFS/ICP-MS label-free nucleic acid and protein assays based on a selective cation exchange reaction and simple filtration separation. Analyst 2019; 144:2797-2802. [PMID: 30882111 DOI: 10.1039/c8an01926f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, label-free atomic spectrometric bioassays are attracting great research interest because of their advantages of low cost, simple design and operation, etc. Herein, a novel and simple chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS)/inductively coupled plasma-mass spectrometry (ICP-MS) label-free detection method is presented for highly sensitive and selective assay of DNA and proteins. This work mainly combined a phenomenon that CdTe quantum dots (QDs) can be used to selectively differentiate free Hg2+ and the T-Hg2+-T complex, with the use of simple membrane filtration separation to improve the performance of the label-free bioassay methods. Upon hybridization with the DNA/protein (carcinoembryonic antigen, CEA) target, the T-Hg2+-T hairpin structure was opened and Hg2+ was released; this initiated the cation exchange reaction between Hg2+ and CdTe QDs which released Cd2+ simultaneously. Subsequently, the free Cd2+ was separated by the filtration membrane without separating the CdTe QDs, which could then be separated from the sample matrices for the CVG-AFS/ICP-MS assay. Under the optimal conditions, this method possessed high sensitivity for DNA and CEA determination with limits of detection (LODs) of 0.2 nM and 0.2 ng mL-1, and linear dynamic ranges of 1-160 nM and 0.5-20 ng mL-1, respectively, and exhibited excellent DNA sequence specificity and protein selectivity. This method preserves the advantages of the label-free atomic spectrometric bioassay, and combined with the selective cation exchange reaction and simple filtration separation to improve the performance.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
He X, Xiong LH, Zhao Z, Wang Z, Luo L, Lam JWY, Kwok RTK, Tang BZ. AIE-based theranostic systems for detection and killing of pathogens. Theranostics 2019; 9:3223-3248. [PMID: 31244951 PMCID: PMC6567968 DOI: 10.7150/thno.31844] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria, fungi and viruses pose serious threats to the human health under appropriate conditions. There are many rapid and sensitive approaches have been developed for identification and quantification of specific pathogens, but many challenges still exist. Culture/colony counting and polymerase chain reaction are the classical methods used for pathogen detection, but their operations are time-consuming and laborious. On the other hand, the emergence and rapid spread of multidrug-resistant pathogens is another global threat. It is thus of utmost urgency to develop new therapeutic agents or strategies. Luminogens with aggregation-induced emission (AIEgens) and their derived supramolecular systems with unique optical properties have been developed as fluorescent probes for turn-on sensing of pathogens with high sensitivity and specificity. In addition, AIE-based supramolecular nanostructures exhibit excellent photodynamic inactivation (PDI) activity in aggregate, offering great potential for not only light-up diagnosis of pathogen, but also image-guided PDI therapy for pathogenic infection.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Bruna N, Collao B, Tello A, Caravantes P, Díaz-Silva N, Monrás JP, Órdenes-Aenishanslins N, Flores M, Espinoza-Gonzalez R, Bravo D, Pérez-Donoso JM. Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Sci Rep 2019; 9:1953. [PMID: 30760793 PMCID: PMC6374371 DOI: 10.1038/s41598-018-38330-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Here we report the biological synthesis of CdS fluorescent nanoparticles (Quantum Dots, QDs) by polyextremophile halophilic bacteria isolated from Atacama Salt Flat (Chile), Uyuni Salt Flat (Bolivia) and the Dead Sea (Israel). In particular, a Halobacillus sp. DS2, a strain presenting high resistance to NaCl (3-22%), acidic pH (1-4) and cadmium (CdCl2 MIC: 1,375 mM) was used for QDs biosynthesis studies. Halobacillus sp. synthesize CdS QDs in presence of high NaCl concentrations in a process related with their capacity to generate S2- in these conditions. Biosynthesized QDs were purified, characterized and their stability at different NaCl concentrations determined. Hexagonal nanoparticles with highly defined structures (hexagonal phase), monodisperse size distribution (2-5 nm) and composed by CdS, NaCl and cysteine were determined by TEM, EDX, HRXPS and FTIR. In addition, QDs biosynthesized by Halobacillus sp. DS2 displayed increased tolerance to NaCl when compared to QDs produced chemically or biosynthesized by non-halophilic bacteria. This is the first report of biological synthesis of salt-stable QDs and confirms the potential of using extremophile microorganisms to produce novel nanoparticles. Obtained results constitute a new alternative to improve QDs properties, and as consequence, to increase their industrial and biomedical applications.
Collapse
Affiliation(s)
- N Bruna
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - B Collao
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - A Tello
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
- Laboratorio de Nanotecnología, Recursos Naturales y Sistemas Complejos, Facultad de Ciencias Naturales, Departamento de Química y Biología, Universidad de Atacama, Copiapó, Chile
| | - P Caravantes
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - N Díaz-Silva
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - J P Monrás
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - N Órdenes-Aenishanslins
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile
| | - M Flores
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - R Espinoza-Gonzalez
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - D Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
10
|
Abstract
Proteases play a pivotal role in regulating important physiological processes from food digestion to blood clotting. They are also important biomarkers for many diseases such as cancers. The importance of proteases has led to extensive efforts in the screening of proteases and their inhibitors as potential drug molecules. For example, human immunodeficiency virus (HIV) patients have been treated with HIV-1 protease inhibitors to prolong the life expectancy of patients. Such a close relationship between diseases and proteases provides a strong motivation for developing sensitive, selective, and robust protease assays and sensors, which can be exploited to discover new proteases and inhibitors. In this aspect, protease assays based on levels of proteolytic activities are more relevant than protease affinity assays such as immunoassays. In this review, recent developments of protease activity assays based on different detection principles are discussed and compared. For homogenous assays, fluorescence-based techniques are the most popular due to their high sensitivity and quantitative results. However, homogeneous assays have limited multiplex sensing capabilities. In contrast, heterogeneous assays can be employed to detect multiple proteases simultaneously, given the microarray technology that is already available. Among them, electrochemical methods, surface spectroscopy techniques, and enzyme-linked peptide protease assays are commonly used. Finally, recent developments in liquid crystal (LC)-based protease assays and their applications for detecting proteases and their inhibitors are discussed.
Collapse
Affiliation(s)
| | - Kun-Lin Yang
- National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| |
Collapse
|
11
|
Xiong LH, He X, Zhao Z, Kwok RTK, Xiong Y, Gao PF, Yang F, Huang Y, Sung HHY, Williams ID, Lam JWY, Cheng J, Zhang R, Tang BZ. Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional Aggregation-Induced Emission Luminogen. ACS NANO 2018; 12:9549-9557. [PMID: 30148962 DOI: 10.1021/acsnano.8b05270] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sensitive and accurate detection of highly contagious virus is urgently demanded for disease diagnosis and treatment. Herein, based on a multifunctional aggregation-induced emission luminogen (AIEgen), a dual-modality readout immunoassay platform for ultrasensitive detection of viruses has been successfully demonstrated. The platform is relied on virions immuno-bridged enzymatic hydrolysis of AIEgen, accompanying with the in situ formation of highly emissive AIE aggregates and shelling of silver on gold nanoparticles. As a result, robust turn-on fluorescence and naked-eye discernible plasmonic colorimetry composed dual-signal is achieved. By further taking advantage of effective immunomagnetic enrichment, EV71 virions, as an example, can be specifically detected with a limit of detection down to 1.4 copies/μL under fluorescence modality. Additionally, semiquantitative discerning of EV71 virions is realized in a broad range from 1.3 × 103 to 2.5 × 106 copies/μL with the naked eye. Most importantly, EV71 virions in 24 real clinical samples are successfully diagnosed with 100% accuracy. Comparing to the gold standard polymerase chain reaction (PCR) assay, our immunoassay platform do not need complicated sample pretreatment and expensive instruments. This dual-modality strategy builds a good capability for both colorimetry based convenient preliminary screening and fluorescence based accurate diagnosis of suspect infections in virus-stricken areas.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Yu Xiong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Peng Fei Gao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Herman H-Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
12
|
Chen P, Hu P, Huang K, Sawyer E, Sun K, Ying B, Wei X, Geng J. Detection of nucleic acids via G-quadruplex-controlled l-cysteine oxidation and catalyzed hairpin assembly-assisted signal amplification. RSC Adv 2018; 8:40564-40569. [PMID: 35557911 PMCID: PMC9091423 DOI: 10.1039/c8ra08296k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
A novel homogeneous strategy for detection of DNA via biomimetic synthesis of luminescent QDs coupled with nucleic acid signal amplification.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
| | - Pingyue Hu
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Ke Huang
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Erica Sawyer
- Department of Laboratory Medicine
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
| | - Ke Sun
- Department of Laboratory Medicine
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
| | - Binwu Ying
- Department of Laboratory Medicine
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
| | - Xiawei Wei
- Department of Laboratory Medicine
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
| | - Jia Geng
- Department of Laboratory Medicine
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
| |
Collapse
|
13
|
Wu Y, Nizam MN, Ding X, Xu FJ. Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomater Sci Eng 2017; 4:2018-2025. [DOI: 10.1021/acsbiomaterials.7b00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yeping Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Xiong LH, He X, Xia J, Ma H, Yang F, Zhang Q, Huang D, Chen L, Wu C, Zhang X, Zhao Z, Wan C, Zhang R, Cheng J. Highly Sensitive Naked-Eye Assay for Enterovirus 71 Detection Based on Catalytic Nanoparticle Aggregation and Immunomagnetic Amplification. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14691-14699. [PMID: 28414215 DOI: 10.1021/acsami.7b02237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Development of sensitive, convenient, and cost-effective virus detection product is of great significance to meet the growing demand of clinical diagnosis at the early stage of virus infection. Herein, a naked-eye readout of immunoassay by means of virion bridged catalase-mediated in situ reduction of gold ions and growth of nanoparticles, has been successfully proposed for rapid visual detection of Enterovirus 71 (EV71). Through tailoring the morphologies of the produced gold nanoparticles (GNPs) varying between dispersion and aggregation, a distinguishing color changing was ready for observation. This colorimetric detection assay, by further orchestrating the efficient magnetic enrichment and the high catalytic activity of enzyme, is managed to realize highly sensitive detection of EV71 virions with the limit of detection (LOD) down to 0.65 ng/mL. Our proposed method showed a much lower LOD value than the commercial ELISA for EV71 virion detection. Comparing to the current clinical gold standard polymerase chain reaction (PCR) method, our strategy provided the same diagnostic outcomes after testing real clinical samples. Besides, this strategy has no need of complicated sample pretreatment or expensive instruments. Our presented naked-eye immunoassay method holds a promising prospect for the early detection of virus-infectious disease especially in resource-constrained settings.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
- School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
| | - Xuewen He
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, Hong Kong, China
| | - Junjie Xia
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Qian Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Long Chen
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Chunli Wu
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Xiaomin Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Zheng Zhao
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, Hong Kong, China
| | - Chengsong Wan
- School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| |
Collapse
|
15
|
Yang HY, Fu Y, Jang MS, Li Y, Lee JH, Chae H, Lee DS. Multifunctional Polymer Ligand Interface CdZnSeS/ZnS Quantum Dot/Cy3-Labeled Protein Pairs as Sensitive FRET Sensors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35021-35032. [PMID: 27983790 DOI: 10.1021/acsami.6b12877] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-quality CdZnSeS/ZnS alloyed core/thick-shell quantum dots (QDs) as energy donors were first exploited in Förster resonance energy transfer (FRET) applications. A highly efficient ligand-exchange method was used to prepare low toxicity, high quantum yield, stabile, and biocompatible CdZnSeS/ZnS QDs densely capped with multifunctional polymer ligands containing dihydrolipoic acid (DHLA). The resulting QDs can be applied to construct QDs-based Förster resonance energy transfer (FRET) systems by their high affinity interaction with dye cyanine 3 (Cy3)-labeled human serum albumin (HSA). This QD-based FRET protein complex can serve as a sensitive sensor for probing the interaction of clofazimine with proteins using fluorescence spectroscopic techniques. The ability of FRET imaging both in vitro and in vivo not only reveals that the current FRET system can remain intact for 2 h but also confirms the potential of the FRET system to act as a nanocarrier for intracellular protein delivery or to serve as an imaging probe for cancer diagnosis.
Collapse
Affiliation(s)
| | | | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 135-710, Republic of Korea
| | | | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 135-710, Republic of Korea
| | | | | |
Collapse
|
16
|
|
17
|
Xiong LH, Cui R, Zhang ZL, Tu JW, Shi YB, Pang DW. Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5416-22. [PMID: 26313741 PMCID: PMC6352974 DOI: 10.1002/smll.201500816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/06/2015] [Indexed: 05/24/2023]
Abstract
Synthesizing nanomaterials of desired properties is a big challenge, which requires extremely harsh conditions and/or use of toxic materials. More recently developed in vivo methods have brought a different set of problems such as separation and purification of nanomaterials made in vivo. Here, a novel approach that harnesses cellular pathways for in vitro synthesis of high-quality tellurium nanorods with tunable lengths and optical properties is reported. It is first demonstrated that in vivo biochemical pathways could be used to synthesize Te nanorods via the intracellular reduction of TeO3(2-) in living Staphylococcus aureus cells. The pathways to set up a quasi-biological system for Te precursor formation are then utilized, which could further synthesize Te nanorods in vitro. This allows to successfully synthesize in vitro, under routine laboratory conditions, Te nanorods with uniform and tunable lengths, ranging from about 10 to 200 nm, and controllable optical properties with high molar extinction coefficients. The approach here should open new avenues for controllable, facile, and efficient synthesis of designer nanomaterials for diverse industrial and biomedical applications.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Wei Tu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, PCRM, NICHD, NIH, Bethesda, MD, 20892-5431, USA
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
18
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
19
|
Mao Z, Qing Z, Qing T, Xu F, Wen L, He X, He D, Shi H, Wang K. Poly(thymine)-Templated Copper Nanoparticles as a Fluorescent Indicator for Hydrogen Peroxide and Oxidase-Based Biosensing. Anal Chem 2015; 87:7454-60. [PMID: 26112746 DOI: 10.1021/acs.analchem.5b01700] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomineralized fluorescent metal nanoparticles have attracted considerable interest in many fields by virtue of their excellent properties in synthesis and application. Poly(thymine)-templated fluorescent copper nanoparticles (T-CuNPs) as a promising nanomaterial has been exploited by us recently and displays great potential for signal transducing in biochemical analysis. However, the application of T-CuNPs is rare and still at an early stage. Here, a new fluorescent analytical strategy has been developed for H2O2 and oxidase-based biosensing by exploiting T-CuNPs as an effective signal indicator. The mechanism is mainly based on the poly(thymine) length-dependent formation of T-CuNPs and the probe's oxidative cleavage. In this assay, the probe T40 can effectively template the formation of T-CuNPs by a fast in situ manner in the absence of H2O2, with high fluorescent signal, while the probe is cleaved into short-oligonucleotide fragments by hydroxyl radical (·OH) which is formed from the Fenton reaction in the presence of H2O2, leading to the decline of fluorescence intensity. By taking advantage of H2O2 as a mediator, this strategy is further exploited for oxidase-based biosensing. As the proof-of-concept, glucose in human serum has been chosen as the model system and has been detected, and its practical applicability has been investigated by assay of real clinical blood samples. Results demonstrate that the proposed strategy has not only good detection capability but also eminent detection performance, such as simplicity and low-cost, holding great potential for constructing effective sensors for biochemical and clinical applications.
Collapse
Affiliation(s)
- Zhengui Mao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhihe Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Taiping Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Fengzhou Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Li Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
20
|
Zeng T, Zhang T, Wei W, Li Z, Wu D, Wang L, Guo J, He X, Ma N. Compact, Programmable, and Stable Biofunctionalized Upconversion Nanoparticles Prepared through Peptide-Mediated Phase Transfer for High-Sensitive Protease Sensing and in Vivo Apoptosis Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11849-56. [PMID: 25970768 DOI: 10.1021/acsami.5b01446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protease represents an important class of biomarkers for disease diagnostics and drug screening. Conventional fluorescence-based probes for in vivo protease imaging suffer from short excitation wavelengths and poor photostability. Upconversion nanoparticles (UCNPs) hold great promise for biosensing and bioimaging because of their deep-tissue excitability, robust photostability, and minimal imaging background. However, producing highly stable and compact biofunctionalized UCNP probes with optimal bioresponsivity for in vivo imaging of protease activities still remains challenging and has not been previously demonstrated. Herein, we report facile preparation of highly compact and stable biofunctionalized UCNPs through peptide-mediated phase transfer for high-sensitive detection of protease in vitro and in vivo. We demonstrate that the polyhistidine-containing chimeric peptides could displace oleic acid molecules capped on UCNPs synthesized in organic solvents and, thereby, directly transfer UCNPs from the chloroform phase to the water phase. The resulting UCNPs possess high stability, programmable surface properties, and a compact coating layer with minimized thickness for efficient luminescence resonance energy transfer (LRET). On the basis of this strategy, we prepared LRET-based UCNP probes with optimal bioresponsivity for in vitro high-sensitive detection of trypsin and in vivo imaging of apoptosis for chemotherapy efficacy evaluation. The reported strategy could be extended to construct a variety of peptide-functionalized UCNPs for various biomedical applications.
Collapse
Affiliation(s)
- Tao Zeng
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Tao Zhang
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wei Wei
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhi Li
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Dan Wu
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Li Wang
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jun Guo
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xuewen He
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Nan Ma
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
21
|
Zhu X, Hu J, Zhao Z, Sun M, Chi X, Wang X, Gao J. Kinetic and sensitive analysis of tyrosinase activity using electron transfer complexes: in vitro and intracellular study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:862-870. [PMID: 25285706 DOI: 10.1002/smll.201401595] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Tyrosinase is an important marker of human diseases such as the neurodegeneration associated with Parkinson's disease and melanoma. Sensitive detection of tyrosinase activity in vitro and inside cells is of great significance to medical diagnostics and skin disorder treatments. With unique photophysical properties, semiconductor quantum dots (QDs) are employed as photoluminescent platforms for various biosensing, in particular for the detection of enzyme activities. In this work, QDs are functionalized with tyrosine and zwitterionic molecules to construct a nanometer-scale scaffold (QD-Tyr conjugate), and this is used to test tyrosinase activity in vitro and inside cells. Tyrosinase oxidizes tyrosine to dopachrome and switches on the electron-transfer access, which relates to fluorescence quenching. High quenching efficiency is achieved by shortening the distance between the electron donors and acceptors, which is attributed to the small size of the conjugated tyrosine. Enzymatic process curves reveal the enhanced enzymatic activity on the conjugated nanoparticle substrate, which leads to highly sensitive detection of tyrosinase (as low as 1 nM). It is also demonstrated that QD-Tyr conjugates can sensitively probe intracellular tyrosinase in melanoma cells, which promises great potential in disease monitoring and medical diagnostics.
Collapse
Affiliation(s)
- Xianglong Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | | | | | | | | | | | | |
Collapse
|
22
|
He X, Ma N. An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces 2014; 124:118-31. [DOI: 10.1016/j.colsurfb.2014.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/23/2014] [Accepted: 06/01/2014] [Indexed: 12/23/2022]
|
23
|
He X, Ma N. A General Strategy for Label-Free Sensitive DNA Detection Based on Quantum Dot Doping. Anal Chem 2014; 86:3676-81. [DOI: 10.1021/ac500590d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xuewen He
- The Key Lab of Health Chemistry
and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Nan Ma
- The Key Lab of Health Chemistry
and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
24
|
Blackstock D, Park M, Sun Q, Tsai SL, Chen W. Engineering protein modules for diagnostic applications. Curr Opin Chem Eng 2013. [DOI: 10.1016/j.coche.2013.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|