1
|
Chen A, Leff AC, Forcherio GT, Boltersdorf J, Woehl TJ. Examining Silver Deposition Pathways onto Gold Nanorods with Liquid-Phase Transmission Electron Microscopy. J Phys Chem Lett 2023; 14:1379-1388. [PMID: 36729066 DOI: 10.1021/acs.jpclett.2c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid-phase transmission electron microscopy (LP-TEM) enables one to directly visualize the formation of plasmonic nanoparticles and their postsynthetic modification, but the relative contributions of plasmonic hot electrons and radiolysis to metal precursor reduction remain unclear. Here we show silver deposition onto plasmonic gold nanorods (AuNRs) during LP-TEM is dominated by water radiolysis-induced chemical reduction. Silver was observed with LP-TEM to form bipyramidal shells at higher surfactant coverage and tip-preferential lobes at lower surfactant coverage. Ex situ silver photodeposition formed nanometer-thick shells on AuNRs with preferential deposition in inter-rod gaps, while chemical reduction deposited silver at AuNR tips at low surfactant coverage and formed pyramidal shells at higher surfactant coverage, consistent with LP-TEM. Silver deposition locations during LP-TEM were inconsistent with simulated near-field enhancement and hot electron generation hot spots. Collectively, the results indicate chemical reduction dominated during LP-TEM, indicating observation of plasmonic hot electron-induced photoreduction will necessitate suppression of radiolysis.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Asher C Leff
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783, United States
- General Technical Services, LLC, Wall Township, New Jersey 07727, United States
| | - Gregory T Forcherio
- Electrooptic Technology Division, Naval Surface Warfare Center, Crane, Indiana 47522, United States
| | - Jonathan Boltersdorf
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Deng L, Zou Y, Jiang J. Plasmonic MoO 2 embedded MoNi 4 nanosheets prepared by NiMoO 4 transformation for visible-light-enhanced 4-nitrophenol reduction. Dalton Trans 2021; 50:17235-17240. [PMID: 34784407 DOI: 10.1039/d1dt03216j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic hybrid catalysts have attracted great interest for the reduction of nitrobenzene waste to valuable aminobenzene, because they can use renewable solar energy to accelerate the catalytic reaction. However, the economical synthesis of non-precious plasmonic hybrid catalysts remains a big challenge. Herein we report the synthesis of plasmonic MoO2-embedded MoNi4 nanosheets (MoNi4-MoO2) by thermal annealing of NiMoO4 at 600 °C under a hydrogen atmosphere. The MoNi4-MoO2 hybrid catalysts retain strong plasmon absorption from MoO2 and demonstrate good catalytic activity from MoNi4 for 4-nitrophenol reduction in the dark. Under visible light irradiation, the excitation of MoO2 plasmon promotes the catalytic reaction further due to hot electron-induced increase of catalytic activity of MoNi4. In addition, the hybrid catalysts are relatively stable even under illumination reaction conditions.
Collapse
Affiliation(s)
- Liujun Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yu Zou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jiang Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
3
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Zhu H, Xie H, Yang Y, Wang K, Zhao F, Ye W, Ni W. Mapping Hot Electron Response of Individual Gold Nanocrystals on a TiO 2 Photoanode. NANO LETTERS 2020; 20:2423-2431. [PMID: 32141755 DOI: 10.1021/acs.nanolett.9b05125] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Incorporating metal nanocrystals with semiconductor photoanodes significantly enhances the efficiency of the energy conversion in the visible range during water splitting due to the excitation of hot electrons. While extensively studied on ensemble samples, hot electron response of metal nanocrystals in a photoelectrochemical cell remains unexploited at the single-particle level. Herein, we systematically investigate hot electron response of individual single-crystalline gold nanocrystals (AuNCs) on a TiO2 photoanode during water splitting. We directly correlate the morphology of the AuNC and its plasmonic property to the efficiencies involving hot electrons with the help of single-particle dark-field microscopy and photocurrent mapping. Our results show that the efficiencies of individual AuNCs are dependent on a variety of factors including interface condition, applied bias, excitation power, incident angle, and AuNC size. Our research may shed light on optimizing the light-harvesting capability of metal/semiconductor photoanodes by providing insights into the photocatalytic processes.
Collapse
Affiliation(s)
- Haifei Zhu
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Hao Xie
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Yang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Kaiyu Wang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Fei Zhao
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Weixiang Ye
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
5
|
Zhang W, Liu J, Niu W, Yan H, Lu X, Liu B. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14850-14856. [PMID: 29569899 DOI: 10.1021/acsami.7b19328] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanogaps as "hot spots" with highly localized surface plasmon can generate ultrastrong electromagnetic fields. Superior to the exterior nanogaps obtained via aggregation and self-assembly, interior nanogaps within Au and Ag nanostructures give stable and reproducible surface-enhanced Raman scattering (SERS) signals. However, the synthesis of nanostructures with interior hot spots is still challenging because of the lack of high-yield strategies and clear design principles. Herein, gold-silver nanoclusters (Au-Ag NCs) with multiple interior hot spots were fabricated as SERS platforms via selective growth of Ag nanoparticles on the tips of Au nanostars (Au NSs). Furthermore, the interior gap sizes of Au-Ag NCs can be facilely tuned by changing the amount of AgNO3 used. Upon 785 nm excitation, single Au-Ag NC350 exhibits 43-fold larger SERS enhancement factor and the optimal signal reproducibility relative to single Au NS. The SERS enhancement factors and signal reproducibility of Au-Ag NCs increase with the decrease of gap sizes. Collectively, the Au-Ag NCs could serve as a flexible, reproducible, and active platform for SERS investigation.
Collapse
Affiliation(s)
- Weiqing Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies , Tianjin University of Technology , Tianjin 300384 , China
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| | - Jie Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| | - Wenxin Niu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| | - Heng Yan
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| | - Xianmao Lu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| |
Collapse
|