1
|
Guo B, Wang E. A Diimidazole-Based Amphiphilic Probe for Wash-Free Cell Plasma Membrane Imaging. J Fluoresc 2025:10.1007/s10895-025-04290-2. [PMID: 40208404 DOI: 10.1007/s10895-025-04290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
The cell plasma membrane is involved in diverse cellular processes and functions. The plasma membrane imaging is an effective means of revealing its morphology and dynamics. In this work, we synthesized two amphiphilic fluorophores derived from tetraphenylimidazole (TPI), one of which is a TPI monomer (MTPI) and the other is a TPI dimer (DTPI). As fluorescent molecular rotors, both of them show negligible fluorescence in H2O but dramatically enhanced enhanced emission in high-viscosity media. Their amphiphilic nature enables stable anchoring within anionic micelles/vesicles, accompanied by intense fluorescence activation. It's worth stressing that DTPI exhibits much more intense emission than MTPI does, whether in high-viscosity methol/glycerol mixtures or in sodium dodecyl sulfate micelles. The cell imaging experiments demonstrated that DTPI can be used as a wash-free probe for plasma membrane visualization.
Collapse
Affiliation(s)
- Bailin Guo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Enju Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.
| |
Collapse
|
2
|
Sun H, Wen J, Chen S, Han Y, Ogaji OD, Biu AM, Cui H, Meng X, Li J, Du K, Chang Y. Review of advancement in aggregation-induced emission-based fluorescent biosensors for enzyme detection: Mechanisms and biomedical applications. Anal Chim Acta 2025; 1346:343716. [PMID: 40021315 DOI: 10.1016/j.aca.2025.343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Enzymes, primarily proteins produced by living organisms, exhibit high substrate selectivity and catalytic efficiency. Many are crucial for normal biological processes and are closely associated with the onset of various diseases. As such, developing methods for detecting disease-related enzymes is essential. Biosensors based on aggregation-induced emission (AIE) have gained significant attention due to their outstanding properties, including excellent photostability, high luminescence efficiency in the aggregated state, large Stokes shift, and favorable biocompatibility. This has led researchers to design a variety of fluorogens with AIE characteristics (AIEgens). RESULTS This review provides an overview of the luminescence mechanism behind AIE and the key properties of AIEgens. It focuses on the physiological roles of disease-related enzymes and outlines various AIE-based fluorescent biosensors developed for enzyme recognition and detection. These biosensors are categorized according to their mechanisms, including hydrolysis, electrostatic adsorption, biological redox reactions, and pH-response. Additionally, this review explores the application of enzymes in disease progression, highlighting their value in inhibitor screening, traditional Chinese medicine research, sensing, bioimaging, and disease diagnosis and therapy. It also discusses the current limitations of AIEgens and explores emerging opportunities for their application. SIGNIFICANCE AND NOVELTY Enzyme activity and levels are closely linked to the development of specific diseases, underscoring the importance of advancing methods for enzyme detection in disease diagnosis and treatment. This review provides valuable insights for the development of innovative AIEgens for enzyme detection, expands the options for detection mechanisms, and offers a theoretical foundation for clinical diagnostics and therapeutic applications.
Collapse
Affiliation(s)
- Huihui Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiake Wen
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuli Han
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huan Cui
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Yin B, Chen J, Xiang G, Xu Z, Yang M, Wong SHD. Multiscale and stimuli-responsive biosensing in biomedical applications: Emerging biomaterials based on aggregation-induced emission luminogens. Biosens Bioelectron 2025; 271:117066. [PMID: 39689580 DOI: 10.1016/j.bios.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Biosensors play a critical role in the diagnosis, treatment, and prognosis of diseases, with diverse applications ranging from molecular diagnostics to in vivo imaging. Conventional fluorescence-based biosensors, however, often suffer from aggregation-caused emission quenching (ACQ), limiting their effectiveness in high concentrations and complex environments. In contrast, the phenomenon of aggregation-induced emission (AIE) has emerged as a promising alternative, where luminescent materials exhibit strong emission in the aggregated state with good photostability, biocompatibility, large Stokes shift, high quantum yield, and tunable emission. This review article discusses the development of AIEgen-based biosensors for multiscale biosensing in biomedical applications. The integration of AIEgens with nanomaterials, such as graphene oxide and stimuli-responsive nanomaterials, can further improve the selectivity and multifunctionality of biomolecule detection. By careful molecular design, the affinity between AIEgens and specific biomolecules can be tuned, enabling the selective detection of targets like DNA, RNA, and proteins ex vivo, in vitro and in vivo, which can be applied across multiple scales, from detecting biomolecules and cellular structures to analyzing tissues and organs, underscoring their growing importance in disease diagnosis. Furthermore, we explore the potential integration of AIEgen-based biosensors with artificial intelligence (AI) technologies, offering promising avenues for future advancements in this field.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guangli Xiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zehui Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China.
| | - Siu Hong Dexter Wong
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Zhu YQ, Chen Z, Chen ZY, Zhou ZW, Bai Q, Wu MX, Wang XH. Discrete Macrocyclic Polymer Hosts-Induced Cascade Luminescence Enhancement and Application in Bioimaging. Chemistry 2024; 30:e202402808. [PMID: 39207820 DOI: 10.1002/chem.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The integration of polymers, supramolecular macrocycles and aggregation-induced emission (AIE) molecules provides numerous possibilities for constructing various functional supramolecular systems. Herein, we constructed supramolecular assembled systems based on discrete macrocyclic polymer hosts via the cooperation of hydra-headed macrocycles containing two or three pillar[5]arene units (defined as P2, P3), the block polymer F127 and AIE molecules (alkyl-cyano modified tetraphenylethene, alkyl-triazole-cyano modified 9,10-distyrylanthracene, defined as TPE-(CN)4 and DSA-(TACN)2). Compared with the binary assembly between hydra-headed hosts or F127 and AIE molecules, cascaded supramolecular assembly-induced emission enhancement (SAIEE) in aqueous solution was achieved in discrete macrocyclic polymer-based supramolecular assembled systems. Considering the cascaded SAIEE performance, we have successfully applied discrete macrocyclic polymer-based supramolecular assembled systems to bioimaging and constructed an artificial light-harvesting system (LHs) to explore more potential applications. The supramolecular assembly form of discrete macrocyclic polymers hosts and AIE molecules proposed in this work provides new inspiration for the construction and application of high-performance supramolecular luminescent systems.
Collapse
Affiliation(s)
- Yu-Qi Zhu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhaojun Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhong-Yuan Chen
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhi-Wei Zhou
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Qian Bai
- Center for Medical Experiment, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, P. R. China
| | - Ming-Xue Wu
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Xing-Huo Wang
- Institute for Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Zhu Y, Fang Y, Huang W, Zhang W, Chen F, Dong J, Zeng W. AI-driven precision subcellular navigation with fluorescent probes. J Mater Chem B 2024; 12:11054-11062. [PMID: 39392117 DOI: 10.1039/d4tb01835d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Precise navigation within intricate biological systems is pivotal for comprehending cellular functions and diagnosing diseases. Fluorescent molecular probes, designed to target specific biological molecules, are indispensable tools for this endeavor. This paper delves into the revolutionary potential of artificial intelligence (AI) in crafting highly precise and effective fluorescent probes. We will discuss how AI can be employed to: design new subcellular dyes by optimizing physicochemical properties; design prospective subcellular targeting probes based on specific receptors; quantitatively explore the potential chemical laws of fluorescent molecules to optimize the optical properties of fluorescent probes; optimize the comprehensive properties of the probe and guide the construction of multifunctional targeting probes. Additionally, we showcase recent AI-driven advancements in probe development and their successful biomedical applications, while addressing challenges and outlining future directions towards transforming subcellular research, diagnostics, and drug discovery.
Collapse
Affiliation(s)
- Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Weiheng Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
6
|
Zhang G, Wang Z, Ma L, Li J, Han J, Zhu M, Zhang Z, Zhang S, Zhang X, Wang Z. Identification of Pancreatic Metastasis Cells and Cell Spheroids by the Organelle-Targeting Sensor Array. Adv Healthc Mater 2024; 13:e2400241. [PMID: 38456344 DOI: 10.1002/adhm.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer is a highly malignant and metastatic cancer. Pancreatic cancer can lead to liver metastases, gallbladder metastases, and duodenum metastases. The identification of pancreatic cancer cells is essential for the diagnosis of metastatic cancer and exploration of carcinoma in situ. Organelles play an important role in maintaining the function of cells, the various cells show significant differences in organelle microenvironment. Herein, six probes are synthesized for targeting mitochondria, lysosomes, cell membranes, endoplasmic reticulum, Golgi apparatus, and lipid droplets. The six fluorescent probes form an organelles-targeted sensor array (OT-SA) to image pancreatic metastatic cancer cells and cell spheroids. The homology of metastatic cancer cells brings the challenge for identification of these cells. The residual network (ResNet) model has been proven to automatically extract and select image features, which can figure out a subtle difference among similar samples. Hence, OT-SA is developed to identify pancreatic metastasis cells and cell spheroids in combination with ResNet analysis. The identification accuracy for the pancreatic metastasis cells (> 99%) and pancreatic metastasis cell spheroids (> 99%) in the test set is successfully achieved respectively. The organelles-targeting sensor array provides a method for the identification of pancreatic cancer metastasis in cells and cell spheroids.
Collapse
Affiliation(s)
- Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zirui Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Chemical Experimental Teaching Demonstration Center, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jiahao Han
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zixuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shilong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
9
|
Wang X, Ou Y, Wang X, Yuan L, He N, Li Z, Luo F, Li J, Tan H. A biodegradable injectable fluorescent polyurethane-oxidized dextran hydrogel for non-invasive monitoring. J Mater Chem B 2023; 11:8506-8518. [PMID: 37603338 DOI: 10.1039/d3tb01488f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Hydrogels have been extensively used in the field of biomedical engineering. In order to achieve non-invasive and real-time visualization of the in vivo status of hydrogels, we designed a fluorescent polyurethane-oxidized dextran (PU-OD) hydrogel with good injectability and self-healing properties, which was cross-linked from a tetraphenyl ethylene (TPE)-containing fluorescent polyurethane emulsion with oxidized dextran by dynamic acylhydrazone bonds. The hydrogel can be used as a visual platform for drug delivery as well as monitoring its own degradation. The network structure of the hydrogel gave it drug-loading capability, and the acylhydrazone bond enabled its pH-responsive drug release. Meanwhile, the PU-OD hydrogel could undergo fluorescence resonance transfer with doxorubicin hydrochloride, showing its potential application in monitoring drug release. In addition, fluorometric and weighing methods were performed to monitor the degradation behavior of the hydrogels in vivo and in vitro, respectively, showing that the non-invasive fluorometric method can be consistent with the invasive weighing method. This work highlights that the introduction of aggregation-induced emission molecules into polyurethanes provides a visual platform that allows for non-invasive monitoring of the material without affecting its own function, which is convenient and less damaging to the body or animals. Consequently, it possesses excellent and promising potential in biomedical materials technologies.
Collapse
Affiliation(s)
- Xiao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangcen Ou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaofei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Nan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Xin F, Zhao J, Wang X, Wang H, Wang H, Xing M, Fu Y, Tian Y, Tian Y. Investigating the AIE and water sensing properties of a concise naphthalimide fluorophore. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122621. [PMID: 37003148 DOI: 10.1016/j.saa.2023.122621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
A simple naphthalimide fluorophore NAP-H2O was designed and synthesized. Basic photophysical properties were investigated, especially found that the probe showed robust green fluorescence in water compared with that in various organic solvents, and the specific mechanism was conformed to be the aggregation induced emission (AIE) through dynamic light scattering (DLS) analysis, solid-state luminescence and fluorescence imaging. Accordingly, the capability of NAP-H2O for water sensing was examined, and good linear relationships between fluorescence intensities at the green emission band and the water content were obtained, enabling quantitative detection of water in organic solvents. The detection limits were calculated to be 0.004 % (v/v) in ACN, 0.117 % (v/v) in 1,4-dioxane, 0.028 % (v/v) in THF, 0.022 % (v/v) in DMF and 0.146 % (v/v) in DMSO, respectively. In addition, the probe presented fast response time within 5 s to water and good photostability. Furthermore, the probe was successfully applied for fast and naked-eye detection of water in organic solvents via test papers. This work provides a rapid, sensitive and naked-eye method for trace amount detection of water in organic solvents and has potential for practical applications.
Collapse
Affiliation(s)
- Fangyun Xin
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Jiwei Zhao
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Xichen Wang
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Haixu Wang
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Hong Wang
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Yao Fu
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Yong Tian
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, PR China.
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| |
Collapse
|
11
|
Kim KH, Yan H, Yun SH. Aggregation-Induced Stimulated Emission of 100% Dye Microspheres. ADVANCED OPTICAL MATERIALS 2023; 11:2202956. [PMID: 38107448 PMCID: PMC10723759 DOI: 10.1002/adom.202202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 12/19/2023]
Abstract
Dyes with aggregation-induced emission (AIE) properties have gained interests due to their bright luminescence in solid-state aggregates. While fluorescence from AIE dyes have been widely exploited, relatively little is known about aggregation-induced stimulated emission. Here, we investigated stimulated emission of tetraphenylethene (TPE)-based organoboron AIE dyes, TPEQBN, in thin films and in microcavity lasers. Using femtosecond pump-probe spectroscopy, gain coefficients up to 230 cm-1 at 500 nm were measured. Using rate equations, we analyzed concentration- and pump-dependent gain dynamics as well as laser build up dynamics. During laser oscillation, radiative stimulated emission allows high instantaneous quantum yield greater than 90% to be achieved. We fabricated solid-state microspheres made of 100% AIE dyes via microfluidic emulsion and solvent evaporation method. Coupled with high gain and high refractive index of 1.76, microspheres as small as 2 μm in diameter showed lasing by nanosecond pumping with a threshold of ~10 pJ μm-2. Polymer coated, but not bare, microspheres were internalized by live cells and generated narrowband cavity mode emission from within the cytoplasm. Our work shows the potential of AIE dyes as laser materials.
Collapse
Affiliation(s)
- Kwon-Hyeon Kim
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Hao Yan
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Wu B, Hu K, Wang X, Zhang G. Biomimetic Approach toward Kinetically Stable AIE-Gens under Physiological Conditions. J Phys Chem B 2023. [PMID: 37276365 DOI: 10.1021/acs.jpcb.3c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many AIE-gens suffer from excessive hydrophobicity, and their kinetic stability in aqueous condition is not warranted. Here, we introduce phosphorylcholine, a zwitterionic group ubiquitously found in biological membranes, onto the tetraphenylethene core structure to yield AIE nanoparticles stable in both PBS buffer and cell culture. We also find that the AIE efficiency is critically reliant on the delicate balance between the hydrophilic phosphorylcholine and hydrophobic moieties.
Collapse
Affiliation(s)
- Bingze Wu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Kan Hu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Chua MH, Chin KLO, Loh XJ, Zhu Q, Xu J. Aggregation-Induced Emission-Active Nanostructures: Beyond Biomedical Applications. ACS NANO 2023; 17:1845-1878. [PMID: 36655929 DOI: 10.1021/acsnano.2c10826] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of aggregation-induced emission (AIE) phenomenon in 2001 has had a significant impact on materials development across different research disciplines. AIE-active materials have been widely exploited for various applications in optoelectronics, sensing, biomedical, and stimuli-responsive systems, etc. This is made possible by integrating AIE features with other fields of science and engineering, such as nanoscience and nanotechnology. AIE has been extensively employed, particularly for biomedical applications, such as biosensing, bioimaging, and theranostics. However, development of AIE-based nanotechnology for other applications is comparatively less, although there have been increasing research activities in recent years. Given the significance and potential of the marriage between AIE hallmark and nanotechnology in AIE-active materials development, this review article summarizes and showcases the latest research efforts in AIE-based nanomaterials, including nanomaterials synthesis and their nonbiomedical applications, such as sensing, optoelectronics, functional coatings, and stimuli-responsive systems. A perspective on the outlook of AIE-based nanostructured materials and relevant nanotechnology for nonbiomedical applications will be provided, giving an insight into how to design AIE-active nanostructures as well as their applications beyond the biomedical domain.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Block S8 Level 3, Singapore 117543
| |
Collapse
|
14
|
Han F, Liu L. Aggregation-induced fluorescence 'turn on' imaging for fingerprints by an amphiphilic probe: Synthesis and performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121617. [PMID: 35850042 DOI: 10.1016/j.saa.2022.121617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/13/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Fingerprints are important biological details and play an important role in identifying personal information. To assist the identification of latent fingerprints (LFPs) which are the frequently-met cases in practical application, LFPs are usually made visible/detectable by development (imaging) techniques. In this work, an amphiphilic probe (denoted as HNP) was designed and synthesized. Its amphiphilic nature was confirmed by its single crystal structure and lipid-water partition coefficient (P = 1.38). It showed good solubility in water and bright red AIE (aggregation-induced emission) emission upon visible light excitation (∼410 nm), which satisfied the requirements for LFPs development/imaging. Photophysical parameters (absorption spectrum, emission spectrum, and emission quantum yield), LFPs imaging performance and bio-safety of probe HNP were discussed and reported. It was found that HNP showed efficient AIE effect in aggregated state. After meeting the lipids in LFPs, HNP AIE effect was activated, showing emission "turn-on" phenomenon and LFPs pattern. This mechanism was confirmed by micromorphology analysis. Corresponding dynamics were discussed as well. Good stability and durability were observed for HNP development/imaging. Details down to level 3 were successfully retrieved with high contrast.
Collapse
Affiliation(s)
- Fei Han
- Yiwu Industrial &Commercial College, Yiwu 322000, China
| | - Liang Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
15
|
Lin X, Li W, Wen Y, Su L, Zhang X. Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials 2022; 287:121603. [PMID: 35688028 DOI: 10.1016/j.biomaterials.2022.121603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
As a non-invasive visualization technique, photoluminescence imaging (PLI) has found its huge value in many biological applications associated with intracellular process monitoring and early and accurate diagnosis of diseases. PLI can also be combined with therapeutics to build imaging-guided theragnostic platforms for achieving early and precise treatment of diseases. Photodynamic therapy (PDT) as a quintessential phototheranostics technology has gained great benefits from the combination with PLI. Recently, aggregation-induced emission (AIE)-active materials have emerged as one of the most promising bioimaging and phototheranostic agents. Most of AIEgens, however, need to be chemically engineered to form versatile nanocomposites with improved their photophysical property, photochemical activity, biocompatibility, etc. In this review, we focus on three categories of AIE-active nanocomposites and highlight their application progresses in the intracellular biological process monitoring and PLI-guided PDT. We hope this review can guide further development of AIE-active nanocomposites and promote their practical applications for monitoring intracellular biological processes and imaging-guided PDT.
Collapse
Affiliation(s)
- Xiangfang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wei Li
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| |
Collapse
|
16
|
Zhang X, Lin G, Guo H, Yang F. Tetraphenylethylene-rufigallol-tetraphenylethylene trimers: Novel fluorescence liquid crystals in aggregated states. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Yang X, Li C, Liu L, Zhang H, Feng HT, Li Y, Jiang G, Wang J. Donor–acceptor strategy to construct near infrared AIEgens for cell imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A donor–acceptor strategy was applied to construct NIR AIEgens. Six new AIEgens were obtained and among them, DMNIC exhibited the longest emission maximum at 694 nm and was successfully applied for NIR cell imaging.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongge Zhang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
18
|
Middha E, Chen C, Manghnani PN, Wang S, Zhen S, Zhao Z, Liu B. Synthesis of Uniform Polymer Encapsulated Organic Nanocrystals through Ouzo Nanocrystallization. SMALL METHODS 2022; 6:e2100808. [PMID: 35041272 DOI: 10.1002/smtd.202100808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/16/2021] [Indexed: 06/14/2023]
Abstract
Nanocrystals (NCs) are widely used in optoelectronics, photocatalysis, and bioimaging. As the surface area to volume ratio increases with a decrease in the size of NCs, strategies to control the size of NCs are highly valuable for many applications. Given the importance of photoluminescent dyes, especially those with aggregation-induced emission, the transformation from an amorphous to a crystalline state can yield a drastic enhancement in their optical properties, which is of significance for biomedical applications. Till now, there is no general method available for the synthesis of small NCs with accurate control over the size and uniformity. Herein, a simple and general approach of ouzo nanocrystallization is presented for the synthesis of small (<100 nm) and highly uniform (polydispersity index~0.1) NCs with good control over the size. The process of nanoprecipitation is used to synthesize uniform nanoparticles (NPs) with different size, which is followed by solvent addition to form swollen NPs. Further, the amorphous core of swollen NPs is converted into NCs within polymer shell under Ouzo zone, which restricts NCs to grow above certain size. To demonstrate the general applicability of ouzo nanocrystallization, two different classes of luminescent materials are used as examples to fabricate small and highly uniform NCs.
Collapse
Affiliation(s)
- Eshu Middha
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Chengjian Chen
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Purnima Naresh Manghnani
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Shaowei Wang
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Shijie Zhen
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
19
|
Wang Y, Xia B, Huang Q, Luo T, Zhang Y, Timashev P, Guo W, Li F, Liang X. Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. Adv Healthc Mater 2021; 10:e2100945. [PMID: 34418321 DOI: 10.1002/adhm.202100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Considerable efforts have been made into developing aggregation-induced emission fluorogens (AIEgens)-containing nano-therapeutic systems due to the excellent properties of AIEgens. Compared to other fluorescent molecules, AIEgens have advantages including low background, high signal-to-noise ratio, good sensitivity, and resistance to photobleaching, in addition to being exempt from concentration quenching or aggregation-caused quenching effects. The present review outlines the major developments in the biomedical applications of AIEgens-containing systems. From a literature survey, the recent AIE works are reviewed and the reasons why AIEgens are chosen in various biomedical applications are highlighted. The research activities on AIEgens-containing systems are increasing rapidly, therefore, the present review is timely.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Luo
- School of Medicine Nankai University Tianjin 300071 China
- Department of Interventional Ultrasound Chinese PLA General Hospital Beijing 100853 China
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Weisheng Guo
- Translational Medicine Center Key Laboratory of Molecular Target and Clinical Pharmacology School of Pharmaceutical Sciences and The Second Affiliated Hospital Guangzhou Medical University Guangzhou 510260 China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
AIE materials for lysosome imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34749972 DOI: 10.1016/bs.pmbts.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The aggregation-induced emission (AIE) active bioprobes are known for their high photostability and extraordinary signal to noise ratio. In view of this, research efforts to synthesize new AIE bioimaging probes are at an incredible speed. In this chapter, we have summarized the various lysosome specific AIE active "turn-on" bioprobes having applications in lysosome imaging, monitoring of lysosome bioactivity and evaluation of their therapeutic effects. By discussing their design and operational mechanisms, we hope to provide more insight into designing new AIE bioprobes for specific sensing and imaging of lysosome having flexibility for broad range of biomedical applications.
Collapse
|
21
|
Hu R, Zhang G, Qin A, Tang BZ. Aggregation-induced emission (AIE): emerging technology based on aggregate science. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Functional materials serve as the basic elements for the evolution of technology. Aggregation-induced emission (AIE), as one of the top 10 emerging technologies in chemistry, is a scientific concept coined by Tang, et al. in 2001 and refers to a photophysical phenomenon with enhanced emission at the aggregate level compared to molecular states. AIE-active materials generally present new properties and performance that are absent in the molecular state, providing endless possibilities for the development of technological applications. Tremendous achievements based on AIE research have been made in theoretical exploration, material development and practical applications. In this review, AIE-active materials with triggered luminescence of circularly polarized luminescence, aggregation-induced delayed fluorescence, room-temperature phosphorescence, and clusterization-triggered emission at the aggregate level are introduced. Moreover, high-tech applications in optoelectronic devices, responsive systems, sensing and monitoring, and imaging and therapy are briefly summarized and discussed. It is expected that this review will serve as a source of inspiration for innovation in AIE research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong , Shenzhen 518172 , China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| |
Collapse
|
22
|
Patel K, Shah SKH, Prabhakaran P. Aggregation-induced emission materials for protein fibrils imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:113-136. [PMID: 34782102 DOI: 10.1016/bs.pmbts.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein fibrillation is linked to many devastating diseases including neurodegenerative disorders. Fluorescence probes play a significant role in the detection of amyloid aggregates, monitoring amyloid kinetics, and in the development of amyloid inhibitors. Despite the considerable progress in this area, the mechanism of amyloid fibril formation in vivo is not completely understood. Recent studies in amyloidosis indicate that oligomers and prefibrillar species are more cytotoxic than the fibrils. Hence, early diagnosis of fibrillation has high therapeutical relevance. The gold standard for amyloid staining is thioflavin-T and its major drawbacks are aggregation caused quenching and inability in the detection of oligomers. New amyloid staining probes with novel properties are highly desirable as they can give valuable insights into the complicated process and can replace conventional probes. Aggregation-induced emission probes (AIE-probes) with desirable features are promising candidates in protein fibrils imaging. AIE probes in staining different amyloid fibrils, monitoring amyloid kinetics, and early-stage conformers are reported. Other remarkable features are they can be modified as NIR probes, multifunctional probes, theranostic probes, and super-resolution imaging probes. We aim to provide a broad perspective on the progress attained with AIE probes in protein fibrils imaging and thereby emphasizing the scope of these smart probes in translative research.
Collapse
Affiliation(s)
- Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | | | | |
Collapse
|
23
|
Zhang S, Li D, Wang X, Fan J, Wang T, Yu S, Liao W, Jia X, Yuan Y. Aggregation-induced emission properties of pyridyl-containing tetra-arylethenes. LUMINESCENCE 2021; 36:958-963. [PMID: 33543558 DOI: 10.1002/bio.4023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/08/2022]
Abstract
Tetra-arylethene is one of the most important aggregation-induced emission (AIE) fluorophores. The electronic effect usually plays a vital role in their optical properties. However, the relationship between AIE property and electronic effect in the same fluorophore is rarely studied. Here, we designed and synthesized a series of pyridyl-containing tetra-arylethenes, whose electronic densities could be easily adjusted by the N-oxide or N-methylation of their pyridyl moieties. The optical data of these compounds at aggregation in different solvent systems or solid state exhibited obviously different AIE properties compared with the classic AIE-active tetraphenylethene (TPE).
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Dong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xinyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Jie Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Shangkui Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Wenyi Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Abdollahi MF, You J, Wang T, Zhao Y. Molecular tuning of the crystallization-induced emission enhancement of diphenyl-dibenzofulvene luminogens. Chem Commun (Camb) 2021; 57:484-487. [PMID: 33326519 DOI: 10.1039/d0cc07013k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The absorption and emission properties of various diphenyl-dibenzofulvene (DP-DBF) derivatives were investigated, and their crystallization-induced emission enhancement (CIEE) performances were found to show a clear correlation with the twist angle around the C[double bond, length as m-dash]C bond of the DP-DBF structure.
Collapse
Affiliation(s)
- Maryam F Abdollahi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| | | | | | | |
Collapse
|
25
|
Sayed SM, Jia HR, Jiang YW, Zhu YX, Ma L, Yin F, Hussain I, Khan A, Ma Q, Wu FG, Lu X. Photostable AIE probes for wash-free, ultrafast, and high-quality plasma membrane staining. J Mater Chem B 2021; 9:4303-4308. [PMID: 33908594 DOI: 10.1039/d1tb00049g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasma membrane (PM), a fundamental building component of a cell, is responsible for a variety of cell functions and biological processes. However, it is still challenging to acquire its morphology and morphological variation information via an effective approach. Herein, we report a PM imaging study regarding an aggregation-induced emission luminogen (AIEgen) called tetraphenylethylene-naphthalimide+ (TPE-NIM+), which is derived from our previously reported tetraphenylethylene-naphthalimide (TPE-NIM). The designed AIEgen (TPE-NIM+) shows significant characteristics of ultrafast staining, high photostability, wash-free property, and long retention time at the PM, which can structurally be correlated with its positively charged quaternary amine and hydrophobic moiety. TPE-NIM+ is further applied for staining of different cell lines, proving its universal PM imaging capability. Most importantly, we demonstrate that TPE-NIM+ can clearly delineate the contours of densely packed living cells with high cytocompatibility. Therefore, TPE-NIM+ as a PM imaging reagent superior to currently available commercial PM dyes shall find a number of applications in the biological/biomedical fields and even beyond.
Collapse
Affiliation(s)
- Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Feifei Yin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Imtiaz Hussain
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Arshad Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| |
Collapse
|
26
|
Yang J, Wei J, Luo F, Dai J, Hu JJ, Lou X, Xia F. Enzyme-Responsive Peptide-Based AIE Bioprobes. Top Curr Chem (Cham) 2020; 378:47. [DOI: 10.1007/s41061-020-00311-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
|
27
|
Guo S, Zhou S, Chen J, Guo P, Ding R, Sun H, Feng H, Qian Z. Photochromism and Fluorescence Switch of Furan-Containing Tetraarylethene Luminogens with Aggregation-Induced Emission for Photocontrolled Interface-Involved Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42410-42419. [PMID: 32812420 DOI: 10.1021/acsami.0c12603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is extremely challenging to design photocontrolled molecular switches with absorption and fluorescence dual-mode outputs that are suited for a solid surface and interface. Herein, we report a group of furan-containing tetraarylethene derivatives with unique photophysical behavior of aggregation-induced emission (AIE) and distinct photochemical reaction-triggered photochromic behaviors by combining a photoactive furan or benzofuran group and an AIE-active triphenylethene molecule. The introduction of a furyl or benzofuryl group into the AIE luminogen endows the molecules with significant reversible photochromism and solid-state fluorescence. The coloration and decoloration of these molecules can be switched by respective irradiation of UV and visible light in a reversible way, and the photochromic changes are accompanied by a switch-on and switch-off of the solid-state fluorescence. It is revealed that the photocontrolled cyclization and cycloreversion reactions are responsible for the reversible photochromism and fluorescence switching based on experimental data and theoretical analysis. Both the position and conjugation of the introduced photoactive units have significant influence on the color and strength of the photochromism, and the simultaneous occurrence of photoinduced fluorescence change in the solid state is perfectly suited for surface-involved applications. The demonstrations of dual-mode signaling in photoswitchable patterning on a filter paper and anti-counterfeiting of an anti-falsification paper strongly highlight the unique advantage of these photochromic molecules with an aggregation-induced emission characteristic in various practical applications. This work proposes a general strategy to design photochromic molecules with AIE activity by introducing photoactive functionals into an AIEgen and demonstrates incomparable advantage in dual-mode signaling and multifunctional applications of these molecules.
Collapse
Affiliation(s)
- Sidan Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Shasha Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiajing Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Ping Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Riqing Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Huili Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
28
|
Middha E, Liu B. Nanoparticles of Organic Electronic Materials for Biomedical Applications. ACS NANO 2020; 14:9228-9242. [PMID: 32806064 DOI: 10.1021/acsnano.0c02651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organic electronic materials play important roles in modern electronic devices such as light-emitting diodes, solar cells, and transistors. Upon interaction with light, these optically active materials can undergo different photophysical and photochemical pathways, providing unique opportunities for optimization of light emission via radiative decay, heat generation via nonradiative decay, and singlet oxygen production or phosphorescence emission via intersystem crossing, all of which open alternative opportunities for their applications in sensing, imaging, and therapy. In this Perspective, we discuss all of the pathways that determine the optical properties of high-performance organic electronic materials, focusing on the optimization of each pathway for photogeneration and relaxation of electronic excited states. We also examine nanoparticle (NP) fabrication techniques tailored to macromolecules and small molecules to render them into NPs with optimized size and distribution for biomedical applications and endow organic electronic materials with water dispersibility and biocompatibility. Lastly, we illustrate the in vitro and in vivo applications of some representative organic electronic materials after optimization of each relaxation pathway.
Collapse
Affiliation(s)
- Eshu Middha
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| |
Collapse
|
29
|
Chen M, He J, Xie S, Wang T, Ran P, Zhang Z, Li X. Intracellular bacteria destruction via traceable enzymes-responsive release and deferoxamine-mediated ingestion of antibiotics. J Control Release 2020; 322:326-336. [DOI: 10.1016/j.jconrel.2020.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 10/25/2022]
|
30
|
Zhang R, Niu G, Liu Z, Chau JHC, Su H, Lee MMS, Gu Y, Kwok RTK, Lam JWY, Tang BZ. Single AIEgen for multiple tasks: Imaging of dual organelles and evaluation of cell viability. Biomaterials 2020; 242:119924. [PMID: 32145509 DOI: 10.1016/j.biomaterials.2020.119924] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
Abstract
Fully understanding the complicated interplays among various chemical species and organelles is greatly important to unravel the mystery of life. However, fluorescent probes capable of visualizing multiple targets discriminatively are severely deficient, which extremely limit the investigation on intracellular interplays among various species. Towards this end and in consideration of the unique advantages of aggregation-induced emission luminogens (AIEgens), here we rationally designed and presented a single AIEgen, named TVQE, bearing lipophilic, cationic and hydrolyzable moieties, and this AIEgen was capable of illuminating mitochondria and lipid droplets with red and blue emission, respectively. In addition, TVQE was successfully used for evaluating cell viability due to its distinct two-color emission changes tuned by esterase-mediated hydrolysis. Of particular importance is that TVQE can selectively differentiate live, early apoptotic, late apoptotic, and dead cells by confocal microscopy and quantify cell viability statistically by flow cytometry.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Guangle Niu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Michelle M S Lee
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yuan Gu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China; Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
31
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020; 59:9868-9886. [DOI: 10.1002/anie.202000845] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
32
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000845] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
33
|
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ. Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chem Rev 2020; 120:4534-4577. [DOI: 10.1021/acs.chemrev.9b00814] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yijia Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
34
|
Wang YL, Li C, Qu HQ, Fan C, Zhao PJ, Tian R, Zhu MQ. Real-Time Fluorescence In Situ Visualization of Latent Fingerprints Exceeding Level 3 Details Based on Aggregation-Induced Emission. J Am Chem Soc 2020; 142:7497-7505. [DOI: 10.1021/jacs.0c00124] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ya-Long Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hong-Qing Qu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peng-Ju Zhao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
35
|
Shi X, Yan N, Niu G, Sung SHP, Liu Z, Liu J, Kwok RTK, Lam JWY, Wang WX, Sung HHY, Williams ID, Tang BZ. In vivo monitoring of tissue regeneration using a ratiometric lysosomal AIE probe. Chem Sci 2020; 11:3152-3163. [PMID: 34122820 PMCID: PMC8157324 DOI: 10.1039/c9sc06226b] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue regeneration is a crucial self-renewal capability involving many complex biological processes. Although transgenic techniques and fluorescence immunohistochemical staining have promoted our understanding of tissue regeneration, simultaneous quantification and visualization of tissue regeneration processes is not easy to achieve. Herein, we developed a simple and quantitative method for the real-time and non-invasive observation of the process of tissue regeneration. The synthesized ratiometric aggregation-induced-emission (AIE) probe exhibits high selectivity and reversibility for pH responses, good ability to map lysosomal pH both in vitro and in vivo, good biocompatibility and excellent photostability. The caudal fin regeneration of a fish model (medaka larvae) was monitored by tracking the lysosomal pH change. It was found that the mean lysosomal pH is reduced during 24-48 hpa to promote the autophagic activity for cell debris degradation. Our research can quantify the changes in mean lysosomal pH and also exhibit its distribution during the caudal fin regeneration. We believe that the AIE-active lysosomal pH probe can also be potentially used for long-term tracking of various lysosome-involved biological processes, such as tracking the stress responses of tissue, tracking the inflammatory responses, and so on.
Collapse
Affiliation(s)
- Xiujuan Shi
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Neng Yan
- Department of Ocean Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Guangle Niu
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Simon H P Sung
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Zhiyang Liu
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Junkai Liu
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Wen-Xiong Wang
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Hong Kong China
| | - Herman H-Y Sung
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ian D Williams
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute Hong Kong China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
36
|
|
37
|
Dai J, Duan C, Huang Y, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for RONS sensing. J Mater Chem B 2020; 8:3357-3370. [DOI: 10.1039/c9tb02310k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of AIE bioprobes for RONS sensing in living systems is now summarized. We discuss some representative examples of AIEgen based bioprobes in terms of their molecular design, sensing mechanism and sensitive sensing in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Chong Duan
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|
38
|
Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020; 8:3772-3788. [DOI: 10.1039/d0tb00262c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this Review, recent advances in fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy are described, and the current challenges and perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Feng Qiu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital
- National Clinical Research Centre for Oral Diseases
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London
- UK
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
39
|
Roger M, Amro K, Rault-Berthelot J, Quiot M, Van der Lee A, Poriel C, Richeter S, Clément S, Gerbier P. Synthesis, photophysical and electropolymerization properties of thiophene-substituted 2,3-diphenylbuta-1,3-dienes. NEW J CHEM 2020. [DOI: 10.1039/d0nj02382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electropolymerizable diphenylbuta-1,3-diene derivatives with AIE or AEE properties were synthesized allowing low bandgap polymers to be obtained through electropolymerization processes.
Collapse
Affiliation(s)
| | | | | | | | - Arie Van der Lee
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Université de Montpellier
| | - Cyril Poriel
- Univ. Rennes
- CNRS
- ISCR-UMR CNRS 6226
- F-35000 Rennes
- France
| | | | | | | |
Collapse
|
40
|
Xu P, Qiu Q, Ye X, Wei M, Xi W, Feng H, Qian Z. Halogenated tetraphenylethene with enhanced aggregation-induced emission: an anomalous anti-heavy-atom effect and self-reversible mechanochromism. Chem Commun (Camb) 2019; 55:14938-14941. [PMID: 31774081 DOI: 10.1039/c9cc07045a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogenated tetraphenylethene derivatives show a unique anti-heavy-atom effect where introducing heavy halogens like bromine greatly improves the fluorescence quantum yield upon aggregation, contrary to the classic heavy-atom effect. The unique self-reversible mechanochromism of brominated TPE is attributed to re-generation of halogen-halogen bonding after its breakage.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Xu P, Bao Z, Yu C, Qiu Q, Wei M, Xi W, Qian Z, Feng H. A water-soluble molecular probe with aggregation-induced emission for discriminative detection of Al 3+ and Pb 2+ and imaging in seedling root of Arabidopsis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117335. [PMID: 31288169 DOI: 10.1016/j.saa.2019.117335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Luminogens with aggregation-induced emission (AIE) have been used to develop a new type of molecular probes based on analyte-triggered aggregation, but it still remains a challenge to design water-soluble AIE-active probe for specific detection of metal ions. Herein, we designed and synthesized a water-soluble molecular probe with AIE property for discriminative detection of aluminum ion and lead ion. Four carboxylic acid groups were incorporated into a tetraphenylethylene unit to enhance the coordination affinity and increase water-solubility in aqueous solution. The designed probe can be selectively lighted up by aluminum ion and lead ion via coordination-triggered AIE process. Discrimination of aluminum ion and lead ions based on the probe can be achieved in quantitative manner with the assistance of suitable masking reagents. This probe was further used to image aluminum ions in living cells of seedling roots of Arabidopsis, and the results showed that this probe is capable of imaging aluminum ions in living cells avoiding the interference of lead ions, and is suited for long-term imaging due to its excellent photostability. This work expands the application scope of AIE-active probes in discriminative detection of metal ions, and provides a design direction for water-soluble AIE probes to avoid the false signals from self-precipitation under physiological conditions.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhiyi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chenyi Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qianqian Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Mengru Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Wenbin Xi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
| |
Collapse
|
42
|
Xia F, Wu J, Wu X, Hu Q, Dai J, Lou X. Modular Design of Peptide- or DNA-Modified AIEgen Probes for Biosensing Applications. Acc Chem Res 2019; 52:3064-3074. [PMID: 31657899 DOI: 10.1021/acs.accounts.9b00348] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorophore probes are widely used for bioimaging in cells, tissues, and animals as well as for monitoring of multiple biological processes in complex environments. Such imaging properties allow scientists to make direct visualizations of pathological events and cellular targets. Conventional fluorescent molecules have been developed for several decades and achieved great successes, but their emissions are often weakened or quenched at high concentrations that might suffer from the aggregation-caused quenching (ACQ) effect, which reduces the efficiencies of their applications. In contrast to the ACQ effect, aggregation-induced emission (AIE) luminogens (AIEgens) display much higher fluorescence in aggregated states and possess various advantages such as low background, long-term tracking ability, and strong resistance to photobleaching. Therefore, AIEgens are employed as unique fluorescence molecules and building blocks for biosensing applications in the fields of ions, amino acids, carbohydrates, DNAs/RNAs, peptides/proteins, cellular organelles, cancer cells, bacteria, and so on. Quite a few of the above biosensing missions are accomplished by modular peptide-modified AIEgen probes (MPAPs) or modular DNA-modified AIEgen probes (MDAPs) because of the multiple capabilities of peptide and DNA modules, including solubility, biocompatibility, and recognition. Meanwhile, both electrostatic interactions and coupling reactions could provide efficient methods to construct different MPAPs and MDAPs, finally resulting in a large variety of biosensing probes. Those probes exhibit leading features of detecting nucleic acids or proteins and imaging mass biomolecules. For example, under modular design, peptide modules possessing versatile recognition abilities enable MPAPs to detect numerous targets, such as integrin αvβ3, aminopeptidase N, MMP-2, MPO, H2O2, and so forth; MDAP could allow the imaging of mRNA in cells and tissue chips, suggesting the diagnostic functions of MDAP in clinical samples. Modular design offers a novel strategy to generate AIEgen-based probes and expedites functional biomacromolecules research. In this vein, here we review the progress on MPAPs and MDAPs in the most recent 10 years and highlight the modular design strategy as well as their advanced biosensing applications including briefly two aspects: (1) detection and (2) imaging. By the use of MPAPs/MDAPs, multiple bioanalytes can be efficiently analyzed at low concentrations and directly visualized through high-contrast and luminous imaging. Compared with MPAPs, the quantities of MDAPs are limited because of the difficult synthesis of long-length DNA strands. In future work, multifunctional of DNA sequences are needed to explore varieties of MDAPs for diverse biosensing purposes. At the end of this Account, some deficiencies and challenges are mentioned for briging more attention to accelerate the development of AIEgen-based probes.
Collapse
Affiliation(s)
- Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jun Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qinyu Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, and Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
43
|
Li Q, Liu X, Wang X, Qiu S, Byambasuren K, Dang L, Wang Z. Antiproliferative Ability and Fluorescence Tracking of α-Linolenic Acid-Loaded Microemulsion as Label-Free Delivery Carriers in MDA-MB-231 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11518-11526. [PMID: 31513385 DOI: 10.1021/acs.jafc.9b04972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, the effects of α-linolenic acid (ALA) loaded in oil-in-water (O/W) and water-in-oil-in-water (W/O/W) microemulsions on cell viability, lactic dehydrogenase (LDH) viability, and reactive oxygen species (ROS) levels were examined using Cell Counting Kit-8 (CCK-8), an LDH assay kit, and a fluorescence microscope, respectively. The CCK-8 assay demonstrated that ALA inhibited MDA-MB-231 human breast cancer cell proliferation in a dose-dependent manner. Further, the results of LDH activity and ROS levels revealed that ALA-induced cancer cell damage was closely related to oxidative stress. Under the irradiation of ultraviolet light, the microemulsion without any added fluorescent dye would emit bright blue fluorescence, and the fluorescent images of the cells treated with ALA-loaded O/W and W/O/W microemulsions at different incubation times were taken, which exhibited long-term photostability and biocompatibility. In addition, the fluorescence mechanism of the microemulsion was explained by immobilizing surfactant molecules with aggregation-induced emission (AIE) properties at the water-oil interface through the microemulsion with a self-assembled structure. These findings showed the potential application of O/W and W/O/W microemulsions as the label-free delivery carriers in long-term imaging of living cells and real-time release monitoring of nutrients.
Collapse
Affiliation(s)
- Qing Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xiaoxue Liu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xueping Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Shuang Qiu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | | | - Leping Dang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
44
|
Wang XH, Song N, Hou W, Wang CY, Wang Y, Tang J, Yang YW. Efficient Aggregation-Induced Emission Manipulated by Polymer Host Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903962. [PMID: 31379097 DOI: 10.1002/adma.201903962] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Linear copolymer hosts bearing a number of pillar[5]arene dangling side chains are synthesized for the facile construction of highly emissive supramolecular polymer networks (SPNs) upon noncovalently cross-linking with a series of tetraphenyethylene (TPE)-based tetratopic guests terminated with different functional groups through supramolecular host-guest interactions. An extremely high fluorescence quantum yield (98.22%) of the SPNs materials is obtained in tetrahydrofuran (THF) by fine-tuning the parameters, and meanwhile supramolecular light-harvesting systems based on spherical supramolecular nanoparticles are constructed by interweaving 9,10-distyrylanthracene (DSA) and TPE-based guest molecules of aggregation-induced emission (AIE) with the copolymer hosts in the mixed solvent of THF/H2 O. The present study not only illustrates the restriction of the intramolecular rotations (RIR)-ruled emission enhancement mechanism regulated particularly by macrocyclic arene-containing copolymer hosts, but also suggests a new self-assembly approach to construct high-performance light-harvesting materials.
Collapse
Affiliation(s)
- Xing-Huo Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wei Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
45
|
Wei X, Zhu MJ, Yan H, Lu C, Xu JJ. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chemistry 2019; 25:12671-12683. [PMID: 31283848 DOI: 10.1002/chem.201902465] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/31/2022]
Abstract
The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.
Collapse
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
46
|
Chua MH, Shah KW, Zhou H, Xu J. Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing. Molecules 2019; 24:E2711. [PMID: 31349689 PMCID: PMC6696242 DOI: 10.3390/molecules24152711] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023] Open
Abstract
The discovery of the aggregation-induced emission (AIE) phenomenon in the early 2000s not only has overcome persistent challenges caused by traditional aggregation-caused quenching (ACQ), but also has brought about new opportunities for the development of useful functional molecules. Through the years, AIE luminogens (AIEgens) have been widely studied for applications in the areas of biomedical and biological sensing, chemosensing, optoelectronics, and stimuli responsive materials. Particularly in the application of chemosensing, a myriad of novel AIE-based sensors has been developed to detect different neutral molecular, cationic and anionic species, with a rapid detection time, high sensitivity and high selectivity by monitoring fluorescence changes. This review thus summarises the recent development of AIE-based chemosensors for the detection of anionic species, including halides and halide-containing anions, cyanides, and sulphur-, phosphorus- and nitrogen- containing anions, as well as a few other anionic species, such as citrate, lactate and anionic surfactants.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Kwok Wei Shah
- Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore.
| | - Hui Zhou
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
47
|
Li X, Wang J, Liu J, Tang J, Wang J, Guo J, Wang Y, Huang L, Aleem AR, Kipper MJ, Belfiore LA. Strong luminescence and sharp heavy metal ion sensitivity of water-soluble hybrid polysaccharide nanoparticles with Eu3+ and Tb3+ inclusions. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01048-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Guo M, Song H, Li K, Ma M, Liu Y, Fu Q, He Z. A new approach to developing diagnostics and therapeutics: Aggregation-induced emission-based fluorescence turn-on. Med Res Rev 2019; 40:27-53. [PMID: 31070260 DOI: 10.1002/med.21595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/21/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Fluorescence imaging is a promising visualization tool and possesses the advantages of in situ response and facile operation; thus, it is widely exploited for bioassays. However, traditional fluorophores suffer from concentration limits because they are always quenched when they aggregate, which impedes applications, especially for trace analysis and real-time monitoring. Recently, novel molecules with aggregation-induced emission (AIE) characteristics were developed to solve the problems encountered when using traditional organic dyes, because these new molecules exhibit weak or even no fluorescence when they are in free movement states but emit intensely upon the restriction of intramolecular motions. Inspired by the excellent performances of AIE molecules, a substantial number of AIE-based probes have been designed, synthesized, and applied to various fields to fulfill diverse detection tasks. According to numerous experiments, AIE probes are more practical than traditional fluorescent probes, especially when used in bioassays. To bridge bioimaging and materials engineering, this review provides a comprehensive understanding of the development of AIE bioprobes. It begins with a summary of mechanisms of the AIE phenomenon. Then, the strategies to realize accurate detection using AIE probes are discussed. In addition, typical examples of AIE-active materials applied in diagnosis, treatment, and nanocarrier tracking are presented. In addition, some challenges are put forward to inspire more ideas in the promising field of AIE-active materials.
Collapse
Affiliation(s)
- Meichen Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hang Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
49
|
Zhao Y, Luo Y, Guo T, Tang Z, Zhou Z. A Novel Amphiphilic AIE Molecule and Its Application in Thermosensitive Liposome. ChemistrySelect 2019. [DOI: 10.1002/slct.201900976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yun‐Hui Zhao
- School of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology, Xiangtan, Hunan 411201 China
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| | - Yueyang Luo
- School of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology, Xiangtan, Hunan 411201 China
| | - Tao Guo
- College of ChemistryChemical and Environmental EngineeringHenan University of Technology Zhengzhou Henan 450001 China
| | - Zilong Tang
- School of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology, Xiangtan, Hunan 411201 China
| | - Zhihua Zhou
- School of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology, Xiangtan, Hunan 411201 China
| |
Collapse
|
50
|
Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806701. [PMID: 30698856 DOI: 10.1002/adma.201806701] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE, -581 83, Sweden
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|