1
|
Du K, Zhang G, He D, Chen Z, He S, Hu R, Qin A, Tang BZ. A Near-Infrared II Luminogen with a Photothermal Effect toward Tumor Drug Resistance Reversal. ACS APPLIED MATERIALS & INTERFACES 2025; 17:333-341. [PMID: 39688275 DOI: 10.1021/acsami.4c14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Multidrug resistance of tumor cells has greatly limited the chemotherapy effect. The development of reliable strategies to deal with tumor multidrug resistance is highly desirable for tumor therapy. In this work, a near-infrared II (NIR II) luminogen was rationally designed and prepared, which could act as a photothermal reagent to reverse the drug resistance of tumor cells by reducing the related protein expression, achieving a high inhibition efficiency with the synergistic effect of chemotherapeutic drugs. By the selection of a strong electron-withdrawing unit, the emission peak of the luminogen could reach 973 nm. Moreover, this luminogen shows outstanding photothermal conversion ability and improved thermal stability compared to ICG. Notably, after the photothermal treatment of drug-resistant tumor cells by the NIR II luminogen, the antitumor efficiency of chemotherapeutic drugs, including paclitaxel, cis-platinum, and doxorubicin, was significantly enhanced. The mechanism exploration revealed that drug resistance-related proteins were remarkably reduced, making the cells more sensitive toward drugs. Thus, this strategy demonstrated a promising and reliable approach to reverse the drug resistance of tumor cells for efficient tumor inhibition in the clinic.
Collapse
Affiliation(s)
- Kaihong Du
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhizai Chen
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510006, China
| | - Shanyang He
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510006, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, henzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
2
|
Shang Q, Chen Z, Li J, Guo M, Yang J, Jin Z, Shen Y, Guo S, Wang F. Two-pronged reversal of chemotherapy resistance by gold nanorods induced mild photothermal effect. Bioeng Transl Med 2024; 9:e10670. [PMID: 39553426 PMCID: PMC11561791 DOI: 10.1002/btm2.10670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 11/19/2024] Open
Abstract
Chemotherapy treatment outcomes are severely restricted by multidrug resistance (MDR), in which tumors develop a multiple cross-resistance toward drug involving the pump and nonpump resistance mechanisms, resulting in drug efflux and defending against drug toxicity. Herein, we constructed a pH and near infrared (NIR) light responsive nanomedicine DOX@FG based on gold nanorods (GNRs) that demonstrated the potential to improve chemotherapy outcomes by overcoming MDR. DOX@FG was constructed by conjugating folic acid (FA) and doxorubicin (DOX) derivatives onto GNRs, where the DOX derivatives possessed an acid-labile hydrazone bond. Stimulated by the acidic media in endocytic organelles, DOX@FG exhibited a responsive dissociation for the controlled release of chemotherapeutic DOX. Surprisingly, we found the mild photothermal effect elicited by GNRs under NIR irradiation simultaneously inhibited the pump and nonpump resistance mechanisms, enhancing the intracellular DOX accumulation and sensitizing the cancer cells to DOX, collectively amplify the chemotherapy efficacy and delay the MCF-7/ADR breast tumor growth. This intelligent DOX@FG nanomedicine with the potential for two-pronged reversal of MDR may provide a prospective way to encourage chemotherapy efficacy.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Ziyan Chen
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jing Li
- Department of PharmacyPutuo People's HospitalShanghaiPeople's Republic of China
| | - Mingmei Guo
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
3
|
Wang X, Wang J, Xu X, Zhao H, Liu Y, Peng X, Deng X, Huang T, Zhang H, Wei Y. Antitumor Therapy through Photothermal Performance Synergized with Catalytic Activity Based on the Boron Cluster Supramolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32983-32991. [PMID: 38898566 DOI: 10.1021/acsami.4c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chemodynamic therapy (CDT) has received widespread attention as a tumor optical treatment strategy in the field of malignant tumor therapy. Nonmetallic multifunctional nanomaterials as CDT agents, due to their low toxicity, long-lasting effects, and safety characteristics, have promising applications in the integrated diagnosis and treatment of cancer. Here, we modified the supramolecular framework of boron clusters, coupled with a variety of dyes to develop a series of metal-free agent compounds, and demonstrated that these nonmetallic compounds have excellent CDT activities through experiments. Subsequently, the best performing Methylene Blue/[closo-B12H12]2- (MB@B12H12) was used as an example. Through theoretical calculations, electron paramagnetic resonance spectroscopy, and 808 nm light irradiation, we confirmed that MB@B12H12 exhibited photothermal performance and CDT activity further. More importantly, we applied MB@B12H12 to melanoma cells and subcutaneous tumor, demonstrating its effective suppression of melanoma growth in vitro and in vivo through the synergistic effects of photothermal performance and CDT activity. This study emphasizes the generalizability of the coupling of dyes to [closo-B12H12]2- with important clinical translational potential for CDT reagents. Among them, MB@B12H12 may have a brighter future, paving the way for the rapid development of metal-free CDT reagents.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Jiajia Wang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Haixu Zhao
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Xiaoqing Peng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuefan Deng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| |
Collapse
|
4
|
Bhusare N, Gade A, Kumar MS. Using nanotechnology to progress the utilization of marine natural products in combating multidrug resistance in cancer: A prospective strategy. J Biochem Mol Toxicol 2024; 38:e23732. [PMID: 38769657 DOI: 10.1002/jbt.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.
Collapse
Affiliation(s)
- Nilam Bhusare
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Anushree Gade
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| |
Collapse
|
5
|
Li J, Wei D, Fu Q. Anatase TiO 2-x and zwitterionic porphyrin polymer-based nanocomposite for enhanced cancer photodynamic therapy. NANOSCALE 2023; 15:14790-14799. [PMID: 37642471 DOI: 10.1039/d3nr03012a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Photodynamic therapy has been used as a treatment option for cancer; however, the existing TiO2 photosensitizer does not have the ability to specifically target cancer cells. This lack of selectivity reduces its effectiveness in overcoming cancer resistance. To improve photodynamic therapy outcomes, an innovative solution is proposed. In this study, we report on the compounding of a zwitterionic covalent organic polymer (COP) with a TiO2 photosensitizer for the first time. The aim is to overcome cancer cellular resistance. A one-pot synthetic strategy, which includes the construction of a porphyrin-based COP has been employed. This strategy has also been applied to the rapid preparation of anatase defective TiO2 (TiO2-x). To improve the hydrophilic and antifouling properties of the polymer, zwitterion L-cysteine has been conjugated with a porphyrin-based COP using a thiol-ene "click chemistry" reaction. The novel zwitterionic porphyrin-based COP has the ability to trigger biodegradation under the acid microenvironment due to the presence of acid-sensitive β-thioether esters. When combined with TiO2-x, the resultant nanocomposite produces an enhanced photodynamic therapy effect for drug-resistant cancer cells under NIR laser irradiation. This is due to the strong mutual sensitization of zwitterionic porphyrin-based COP and TiO2-x. Importantly, the nanocomposite delivery system exhibits excellent cytocompatibility in the dark and has the potential to improve the accuracy of cancer diagnosis through fluorescence imaging. The results of this study demonstrate the potential application of this alternative nanocomposite delivery system for remote-controllable photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Jiaxu Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Graduate School, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| |
Collapse
|
6
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
7
|
Zhu L, Liu JL, Yang JT, Wu DW, Xu N, Huo KF, Wang HB. PD-1 engineered cytomembrane cloaked molybdenum nitride for synergistic photothermal and enhanced immunotherapy of breast cancer. J Mater Chem B 2022; 10:9249-9257. [PMID: 36321642 DOI: 10.1039/d2tb01710e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Incomplete tumor ablation and subsequent tumor metastasis usually occur during photothermal anti-tumor processes. The combination of photothermal and immunotherapy has proven to be a promising method to conquer technical challenges. Inhibiting the programmed death ligand-1 (PD-L1)/programmed cell death protein 1 (PD-1) immune pathway represents one of the most successful immunotherapy strategies. Whereas, the PD-L1 expression level significantly differs, leading to a relatively low response rate to the immune checkpoint blockade (ICB) approaches. Therefore, improving the expression level of PD-L1 becomes one potential method to enhance the response rate. Herein, NIH 3T3 cells were educated to steadily express PD-1 protein. Furthermore, the synthesized molybdenum nitride was then coated with PD-1 protein-modified cytomembrane, which endows it with immune checkpoint blocking capability. Moreover, under the irradiation of near-infrared light, the local mild heat released from the molybdenum nitride causes the apoptosis of tumor cells. More importantly, the elevated temperature simultaneously helps elevate the expression level of PD-L1, further enhancing the response rate of ICB. Finally, the PD-1 cytomembrane coatings interact with the upregulated PD-L1, leading to the activation of the immune system. In summary, we confirmed that the PD-1 protein-coated molybdenum nitride could synergistically ablate tumors and avoid metastasis.
Collapse
Affiliation(s)
- Lian Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jia-Lin Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jiang-Tao Yang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430070, China.
| | - Ding-Wei Wu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430070, China.
| | - Na Xu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430070, China.
| | - Kai-Fu Huo
- Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hai-Bo Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
8
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
9
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
11
|
Li J, Zheng L, Li C, Xiao Y, Liu J, Wu S, Zhang B. Mannose modified zwitterionic polyester-conjugated second near-infrared organic fluorophore for targeted photothermal therapy. Biomater Sci 2021; 9:4648-4661. [PMID: 34008632 DOI: 10.1039/d1bm00396h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer resistance has been the huge challenge to clinical treatment. A photothermal therapy of second near-infrared (NIR-II) organic dye small molecule has been used to conquer the cancer resistance. However, the available NIR-II dye lacks selectivity and spreads throughout the body. It has toxicity and indiscriminate burn injuries normal cells and tissues during therapy. Hence, to improve the therapeutic outcomes, herein, for the first time, we report the mannose-modified zwitterionic nanoparticles loading IR1048 dye, aiming to overcome cancer cellular resistance. The targeting molecule mannose has been applied to modify zwitterionic polyester, and the obtained polyester is employed to load IR1048 to prolong the circulation time in the blood and improve the stability of loaded dye, due to the good cytocompatibility of polyester and the antifouling properties of zwitterions. In vitro experimental results show that the pH-responsive targeted nanoparticles display satisfactory photophysical properties, prominent photothermal conversion efficiency (44.07%), excellent photothermal stability, negligible cytotoxicity for normal cells and strong photothermal toxicity to drug-resistant cancer cells. Moreover, due to the mannose targeting effect, cancer cells can endocytose the nanoparticles effectively. All these results demonstrate potential application of this alternative hyperthermal delivery system with remote-controllable photothermal therapy of tumor for accurate diagnosis by NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Jiaxu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China. and School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Jiajian Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Shaohua Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Bo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| |
Collapse
|
12
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Xi J, Huang J, Wang D, Wen L, Hao J, He B, Chen J, Bai ZW. Probing Activity Enhancement of Photothermal Catalyst under Near-Infrared Irradiation. J Phys Chem Lett 2021; 12:3443-3448. [PMID: 33789044 DOI: 10.1021/acs.jpclett.1c00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exploring highly efficient catalysts with excellent photothermal conversion and further unveiling their catalytic mechanism are of significant importance for photothermal catalysis technologies, but there remain grand challenges to these activities. Herein, we fabricate a nest-like photothermal nanocatalyst with Pd decorated on a N-doped carbon functionalized Bi2S3 nanosphere (Bi2S3@NC@Pd). Given its well-dispersed ultrafine Pd nanoparticles and the excellent photothermal heating ability of support material, the Bi2S3@NC@Pd composite exhibits a superior activity and photothermal conversion property to commercial Pd/C catalyst for hydrogenation of organic dyes upon exposure to near-infrared (NIR) light irradiation. In addition, the photothermal effect (temperature rise) and activity enhancement of the heterogeneous catalysis system are further probed by comparing the reaction rate with and without the NIR light irradiation. Furthermore, the catalytic behaviors of the Bi2S3@NC@Pd catalyst under conventional and photothermal heating are investigated at the same reaction temperature. This work not only improves our fundamental understanding of the catalytic behavior in heterogeneous liquid-solid reaction systems under near-infrared irradiation but also may promote the design of catalysts with photothermally promoted activity.
Collapse
Affiliation(s)
- Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Jie Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Deng Wang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Liangsong Wen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jufang Hao
- Staff Development Institute of China National Tobacco Corporation (CNTC), Zhengzhou 450008, China
| | - Baojiang He
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou 450001, China
| | - Jun Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zheng-Wu Bai
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
14
|
Wang Z, Meng Q, Li S. The Role of NIR Fluorescence in MDR Cancer Treatment: From Targeted Imaging to Phototherapy. Curr Med Chem 2020; 27:5510-5529. [PMID: 31244415 DOI: 10.2174/0929867326666190627123719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/25/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. OBJECTIVE This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. RESULTS Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. CONCLUSION We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.
Collapse
Affiliation(s)
- Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
Xu Y, Li P, Cheng D, Wu C, Lu Q, Yang W, Zhu X, Yin P, Liu M, Li H, Zhang Y. Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy. J Mater Chem B 2020; 8:10290-10308. [PMID: 33103712 DOI: 10.1039/d0tb01881c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group IV nanodots (NDs) mainly including carbon (C), silicon (Si), germanium (Ge) have aroused much attention as one type of important nanomaterials that are widely studied in optoelectronics, semiconductors, sensors and biomedicine-related fields owing to the low cost of synthesis, good stability, excellent biocompatibility, and some attractive newly emerged properties. In this review, the synthesis, surface engineering and application in bioimaging and biotherapy of group IV NDs are summarized and discussed. The recent progress in the rational synthesis and functionalization, specific therapy-related properties, together with in vivo and in vitro bioimaging are highlighted. Their new applications in biotherapy such as photothermal therapy (PTT) and photodynamic therapy (PDT) are illustrated with respect to C, Si and Ge NDs. The current challenges and future applications of these emerging materials in bioimaging and biotherapy are presented. This review provides readers with a distinct perspective of the group IV NDs nanomaterials for synthesis and surface engineering, and newly emerging properties related to applications in biomedicine.
Collapse
Affiliation(s)
- Yaxin Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peipei Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Dan Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Weipeng Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
16
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Dual drug-paired polyprodrug nanotheranostics reverse multidrug resistant cancers via mild photothermal-cocktail chemotherapy. J Mater Chem B 2020; 7:5306-5319. [PMID: 31411235 DOI: 10.1039/c9tb01368g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combating multidrug resistance (MDR) of tumors is still challenging for clinical chemotherapy, cocktail chemotherapy (CCT), and currently widely-studied nanodrug-based treatments. Inspired by different MDR-overcoming and antitumor mechanisms of CCT and photothermal therapy (PT), a dual drug-paired polyprodrug nanoparticle (PDCN25-CDDP) was constructed to achieve the combination therapy PT-CCT for reversing MDR and combating multidrug resistant cancers. The PT-CCT treatment can greatly downregulate the P-gp expression level and achieve utmost MDR-reversal and antitumor efficacy by both a cocktail effect of CCT and a synergistic effect of CCT with PT; meanwhile, PT can inhibit the expression of heat shock protein 90 and enhance the thermosensitivity of cancer cells. Upon NIR irradiation, PDCN25-CDDPin vivo produced a selective tumor accumulation effect and relatively deep tumor penetration, as evidenced by fluorescent and photoacoustic imaging and CLSM. The mild PT-CCT treatment completely eradicated MCF-7/ADR and OVCAR-3/DDP tumors without skin damage or tumor recurrence for 30 days, exhibiting synergistic MDR-reversal and superior antitumor efficacy in vivo. Importantly, this work provides an innovative strategy for reversing MDR and combating DOX-resistant breast and CDDP-resistant ovarian cancers.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian Central Hospital, Southern Medical University, Shanghai 201499, P. R. China.
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
17
|
Chen Y, Zhang Z, Xin Y, Zhou R, Jiang K, Sun X, He D, Song J, Zhang Y. Synergistic transdermal delivery of nanoethosomes embedded in hyaluronic acid nanogels for enhancing photodynamic therapy. NANOSCALE 2020; 12:15435-15442. [PMID: 32662485 DOI: 10.1039/d0nr03494k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) is a new therapeutic strategy for hypertrophic scars (HS), but it is limited by low drug utilization. Transdermal delivery based on nanoethosomes (ES) has attracted considerable attention as a potential clinical strategy in PDT treating HS. However, free ES are unsatisfactory due to their instability and non-targeting, which causes non-effective delivery and low drug utilization. Herein, 5-aminolevulinic acid (ALA)-loaded ES (ES-ALA) embedded in hyaluronic acid (HA) meshes (HA/ES-ALA), a novel synergistic transdermal delivery nanogel, are developed for enhancing PDT of HS. HA/ES-ALA has a unique structure and property to protect unilaminar ES-ALA with HA meshes and actively target hypertrophic scar fibroblasts (HSFs) with HA receptors. Both in vitro and in vivo experiments demonstrate that HA/ES-ALA has a remarkable transdermal delivery ability with penetrating channels and a membrane-fusion mechanism. Meanwhile, the synergistic delivery mechanism is visually characterized as three stages: synergistic penetration, targeting aggregation and transmembrane delivery. With the synergistic effect, HA/ES-ALA can realize a targeted transdermal delivery, and significantly improve ALA utilization and enhance PDT efficacy. The results demonstrate an effective transdermal delivery route to enhance therapy for HS as well as other skin diseases.
Collapse
Affiliation(s)
- Yunsheng Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Rong Zhou
- Department of Orthopedic, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, 800 Dongchuan Road, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Xiyang Sun
- Hongqiao International Institute of Medicine, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 XianXia Road, Shanghai, 200336, China.
| | - Dannong He
- Shanghai National Engineering Research Center for Nanotechnology, 245 Jiachuan Road, Shanghai 200237, PR China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, 800 Dongchuan Road, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai 200011, P.R. China. and Shanghai National Engineering Research Center for Nanotechnology, 245 Jiachuan Road, Shanghai 200237, PR China
| |
Collapse
|
18
|
Pan X, Li P, Bai L, Ma J, Li S, Zhang F, Liu S, Wu Q, Shen H, Liu H. Biodegradable Nanocomposite with Dual Cell-Tissue Penetration for Deep Tumor Chemo-Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000809. [PMID: 32378321 DOI: 10.1002/smll.202000809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Chemo-phototherapy, as a promising cancer combination therapy strategy, has attracted widespread attention. However, the complex tumor microenvironment restricts the penetration depth of chemo-phototherapy agents in the tumor region. Here, biodegradable amphiphilic gelatin (AG) wrapped nanocomposite (PRDCuS@AG) composed of doxorubicin and copper sulfide (CuS)-loaded dendrimer is designed for deep tumor chemo-phototherapy. PR in PRDCuS@AG represents arginine-conjugated polyamidoamine dendrimer. PRDCuS@AG can rapidly biodegrade into PRDCuS by matrix metalloproteinases under near-infrared light irradiation. The resulted PRDCuS harbors dual cell-tissue penetration ability, which can effectively penetrate deep into the tumor tissue. In particular, PRDCuS@AG achieves photoacoustic imaging-guided synergistic chemo-phototherapy with 97% of tumor inhibition rate. Moreover, PRDCuS@AG can further degrade into 3 nm ultrasmall CuS, which can be eliminated from the body after treatment to avoid side effects. This strategy provides an insight that the development of chemo-phototherapy agents with high penetration ability to overcome the limitation of current deep tumor therapy.
Collapse
Affiliation(s)
- Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengju Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lintao Bai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junjie Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengrong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Heyun Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
Luo Y, Qiao B, Zhang P, Yang C, Cao J, Yuan X, Ran H, Wang Z, Hao L, Cao Y, Ren J, Zhou Z. TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics 2020; 10:6987-7001. [PMID: 32550917 PMCID: PMC7295044 DOI: 10.7150/thno.44569] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP), as a key substance for regulating tumor progression in the tumor microenvironemnt (TME), is an emerging target for tumor theranostics. Herein, we report a minimalist but versatile nanoplatform with simultaneously TME-responsive drug release, TME-enhanced imaging, ATP-depletion sensitized chemotherapy and photothermal therapy for intelligent tumor theranostics. Methods: The Fe3+ and tannic acid (TA) coordination were self-deposited on doxorubicin (Dox) in a facile method to prepare Dox-encapsulated nanoparticles (DFTNPs). Results: When irradiated by a near infrared laser, the DFTNPs could elevate the temperature in the tumor region efficiently. Subsequently, the Dox could be released by the disassembly of Fe3+/TA in the TME to initiate chemotherapy. Particularly, the smart nanoagent not only enabled ATP-depletion and enhanced the therapeutic effect of chemotherapy, but also acted as photothermal transduction agent for photothermal therapy. Moreover, the nanoagent also acted as T1-weighted MR imaging,photoacoustic imaging and photothermal imaging contrast agent. The mice treated by DFTNPs plus laser showed a complete tumor eradication in 14d observation. Conclusion: This as-prepared versatile nanoplatform offers new insights toward the application of smart nanoagents for improved tumor theranostics.
Collapse
|
20
|
Zhang X, Ong'achwa Machuki J, Pan W, Cai W, Xi Z, Shen F, Zhang L, Yang Y, Gao F, Guan M. Carbon Nitride Hollow Theranostic Nanoregulators Executing Laser-Activatable Water Splitting for Enhanced Ultrasound/Fluorescence Imaging and Cooperative Phototherapy. ACS NANO 2020; 14:4045-4060. [PMID: 32255341 DOI: 10.1021/acsnano.9b08737] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The limited efficacy of "smart" nanotheranostic agents in eradicating tumors calls for the development of highly desirable nanoagents with diagnostics and therapeutics. Herein, to surmount these challenges, we constructed an intelligent nanoregulator by coating a mesoporous carbon nitride (C3N4) layer on a core-shell nitrogen-doped graphene quantum dot (N-GQD)@hollow mesoporous silica nanosphere (HMSN) and decorated it with a P-PEG-RGD polymer, to achieve active-targeting delivery (designated as R-NCNP). Upon irradiation, the resultant R-NCNP nanoregulators exhibit significant catalytic breakdown of water molecules, causing a sustainable elevation of oxygen level owing to the C3N4 shell, which facilitates tumor oxygenation and relieves tumor hypoxia. The generated oxygen bubbles serve as an echogenic source, triggering tissue impedance mismatch, thereby enhancing the generation of an echogenicity signal, making them laser-activatable ultrasound imaging agents. In addition, the encapsulated photosensitizers and C3N4-layered photosensitizer are simultaneously activated to maximize the yield of ROS, actualizing a triple-photosensitizer hybrid nanosystem exploited for enhanced PDT. Intriguingly, the N-GQDs endow the R-NCNP nanoregulator with a photothermal effect for hyperthemia, making it exhibit considerable photothermal outcomes and infrared thermal imaging (IRT). Importantly, further analysis reveals that the polymer-modified R-NCNPs actively target specific tumor tissues and display a triple-modal US/IRT/FL imaging-assisted cooperative PTT/PDT for real-time monitoring of tumor ablation and therapeutic evaluation. The rational synergy of triple-model PDT and efficient PTT in the designed nanoregulator confers excellent anticancer effects, as evidenced by in vitro and in vivo assays, which might explore more possibilities in personalized cancer treatment.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wenzhen Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Weibing Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zhongqian Xi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Fuzhi Shen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Lijie Zhang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
21
|
Chen Y, Yao Y, Zhou X, Liao C, Dai X, Liu J, Yu Y, Zhang S. Cascade-Reaction-Based Nanodrug for Combined Chemo/Starvation/Chemodynamic Therapy against Multidrug-Resistant Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46112-46123. [PMID: 31722522 DOI: 10.1021/acsami.9b15848] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a chemo/starvation/chemodynamic trimodal combination therapy to combat multidrug-resistant (MDR) tumors by developing a ferrocene-containing nanovesicle (FcNV), which encapsulates glucose oxidase (GOx) in the hydrophilic core and coordinates cisplatin (Pt) in the hydrophobic layer (GOx&Pt@FcNV). Contrasting with other reported multimodal combination therapies, the new nanodrug (GOx&Pt@FcNV) relies on cascade reactions to drastically increase the overall effectiveness against MDR tumors. Specifically, Pt blocks deoxyribonucleic acid replication and activates hydrogen peroxide (H2O2) generation for chemotherapy; GOx consumes glucose to produce H2O2 and gluconic acid for starvation therapy; and all H2O2 products are catalyzed by ferrous ions decomposed from ferrocene to generate the highly toxic hydroxyl radicals (•OH) for chemodynamic therapy. The in vitro studies reveal that GOx&Pt@FcNV exhibits a highly efficient killing effect against various MDR tumor cells. The in vivo studies of double-tumor-bearing nude mice demonstrate that the tumor inhibitory rates (TIRs) of GOx&Pt@FcNV against cisplatin-resistant A549/DDP are 8.1 times and 3.3 times higher than those of Pt and Pt@FcNV, respectively; they are also 8.6 times and 4.3 times higher than Pt and Pt@FcNV against adriamycin-resistant MCF-7/ADR, respectively. This nanodrug with endogenous stimuli-activated cascade reactions offers a reference for the design of effective trimodal combination therapies to combat MDR tumors.
Collapse
Affiliation(s)
| | | | | | | | - Xin Dai
- Zunyi Medical and Pharmaceutical College , Pingan Road , Xinpu District, Zunyi 56300 , China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center , West China Hospital Sichuan University , Chengdu 610041 , China
| | | | | |
Collapse
|
22
|
Liu J, Ye Z, Xiang M, Chang B, Cui J, Ji T, Zhao L, Li Q, Deng Y, Xu L, Wang G, Wang L, Wang Z. Functional extracellular vesicles engineered with lipid-grafted hyaluronic acid effectively reverse cancer drug resistance. Biomaterials 2019; 223:119475. [PMID: 31520888 DOI: 10.1016/j.biomaterials.2019.119475] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Multidrug resistance (MDR) is a key issue accounting for ineffectiveness of cancer chemotherapy. Numerous multifunctional nanocarriers have been developed to increase drug delivery efficacy and inhibit drug efflux for overcoming cancer drug resistance. However, limited success has been achieved in clinic because of nanocarriers' complicated multi-step fabrication procedures and their undesired side toxicity as well as potential immunogenicity. Here, hyaluronic acid (HA) functionalized extracellular vesicles (EVs) are generated as natural vehicles to efficiently deliver doxorubicin (DOX) and reverse MDR. The EVs isolated from noncancerous HEK293T cells (hEVs) reduce P-glycoprotein (P-gp) expression in drug resistant MCF7/ADR cells. To acquire tumor-targeting capability, hEVs are modified with lipidomimetic chains-grafted HA (lipHA) by a simple incubation. Owing to CD44-mediated cancer-specific targeting and P-gp suppressive capability, the HA-functionalized hEVs (lipHA-hEVs) remarkably promote the intracellular DOX accumulation in drug resistant breast cancer cells. In preclinical MDR tumor models, lipHA-hEVs deeply penetrate into tumor tissue and effectively transport DOX into tumor local, while eliminating DOX's systemic toxicity. Importantly, DOX@lipHA-hEVs inhibited MDR tumor growth by 89% and extend animal survival time by approximately 50%. Thus, our engineered tumor-targeting hEVs are promising natural carriers for overcoming cancer MDR.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhilan Ye
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengxi Xiang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingcheng Chang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinyuan Cui
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiantian Ji
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Dykman LA, Khlebtsov NG. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:3152-3182. [PMID: 31467774 PMCID: PMC6706047 DOI: 10.1364/boe.10.003152] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
Functionalized gold nanoparticles (GNPs) with controlled geometrical and optical properties have been the subject of intense research and biomedical applications. This review summarizes recent data and topical problems in nanomedicine that are related to the use of variously sized, shaped, and structured GNPs. We focus on three topical fields in current nanomedicine: (1) use of GNP-based nanoplatforms for the targeted delivery of anticancer and antimicrobial drugs and of genes; (2) GNP-based cancer immunotherapy; and (3) combined chemo-, immuno-, and phototherapy. We present a summary of the available literature data and a short discussion of future work.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
24
|
Xiao H, Fan H, Xu L, Pei Z, Lei S, Xu J, Xi J, Wang G, Wang L, Wang Z. A gold-nanodot-decorated hollow carbon nanosphere based nanoplatform for intracellular miRNA imaging in colorectal cancer cells. Chem Commun (Camb) 2019; 55:12352-12355. [DOI: 10.1039/c9cc06674h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a new biofunctionalized nanoplatform based on hyaluronic acid-coated gold-nano-dot-decorated hollow carbon nanospheres (AuHCNs-HA) for microRNA imaging in living cells.
Collapse
|