1
|
Wu C, Zheng Y, Wang W, Liu Y, Yu J, Liu Y. Phase Behavior and Aggregate Transition Based on Co-assembly of Negatively Charged Carbon Dots and a pH-Responsive Tertiary Amine Cationic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13771-13781. [PMID: 36318637 DOI: 10.1021/acs.langmuir.2c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We studied the co-assembly of an oppositely changed binary mixture of selenium-doped carbon quantum dots (Se-CQDs) and N,N-dimethyl octylamide-propyl tertiary amine (DOAPA) through turbidity, ζ potential measurement, and cryogenic transmission electron microscopy (cryo-TEM) with the aim of fabricating supramolecular assemblies with multiple dimensions and novel morphologies. The Se-CQD/DOAPA binary mixture exhibited abundant phase behavior, in which an isotropic phase (I1) was first observed, followed by turbidity (T), precipitation (P), and a second isotropic phase (I2), as the DOAPA concentration increased. Then we focused on investigating the morphologies of samples. In cryo-TEM observations, spherical aggregates were observed in all phase sequences, whereas the aggregates have different ζ potentials and sizes. In the I2 phase, interesting nanocapsule-like aggregates and spindle-like aggregates can be identified in addition to spherical aggregates. In combination with the rheological behaviors of the I2 phase solution and the detailed structure of the aggregates from enlarged cryo-TEM images, it is possible that the Se-CQDs and DOAPA co-assemble with novel network-like building blocks. The turbid solutions were found to be responsive to pH in phase P, and spherical aggregates were obtained at pH 6.5 but turned into vesicles when the pH reached 5.0. On the basis of these findings, CQDs and surfactants can be good structural building blocks for supramolecular structures, and the diverse morphologies of aggregates offer the prospect of multiple applications in the future.
Collapse
Affiliation(s)
- Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Yin Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Wentao Wang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing102413, P. R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - JieYao Yu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| |
Collapse
|
2
|
Yang S, Guo Z, Bian B, Du J, Hu Y. Dynamic Observation of Anisotropic Chainlike Structures during Nonclassical Two-Step Nucleation in Solid-State Iron Oxide Crystallization. J Phys Chem Lett 2022; 13:8352-8358. [PMID: 36043849 DOI: 10.1021/acs.jpclett.2c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demonstration of the self-crystallization nucleation process from an amorphous precursor in a solid is crucial for understanding of interactions between atoms. We report a study of dynamic crystallization process of iron oxides by virtue of in situ measurement of transmission electron microscopy. At first, semiordered chainlike structures are observed with the increase of concentration, and when sufficient chains form, the crystalline lattice begins to grow. The two-step nucleation pathway has also been confirmed by performing a molecular dynamics simulation, where Lennard-Jones and magnetic dipole-dipole interaction potentials are both taken into account and take effect individually predominantly in different ranges of distance between atoms. Furthermore, the total free energy profile in the crystallization nucleation process is calculated to evidence the stabilization of intermediate state. This work advances our understanding of nonclassical nucleation theory.
Collapse
Affiliation(s)
- Song Yang
- Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhongze Guo
- Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Baoru Bian
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Juan Du
- Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Hu
- Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Pei Y, Wu S, Wang P, Qin J, Xu L, Wang Y. Path-Dependent Anisotropic Colloidal Assembly of Magnetic Nanocomposite-Protein Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6265-6272. [PMID: 35548911 DOI: 10.1021/acs.langmuir.1c02923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anisotropic self-assembly of nanoparticles (NPs) stems from the fine-tuning of their surface functionality and NP interaction. Strategies involving ligand interaction, protein interaction, and external stimulus have been developed. However, robust construction of monodispersed magnetic NPs to tens of microns of anisotropically aligned colloidal assembly triggered by adsorbed protein intermolecular interaction is yet to be elucidated. Here, we present the NP-protein interaction, magnetic force, and protein corona intermolecular interaction serially but independently induced path-dependent self-assembly of 100 nm Fe3O4@SiO2 nanocomposites. Dynamic formation of the micron-sized anisotropic magnetic assembly was reproducibly realized in a continuous medium in a controllable manner. Formation of the primary globular clusters upon the unique NP-protein complexes with the help of ions acts as the prerequisite for the anisotropic colloidal assembly, followed by the magnetic force-driven pre-organization and protein intermolecular electrostatic interaction-mediated elongation. The protein concentration rather than the protein original structure plays a more pivotal role in the NP-protein interaction and subsequent colloidal assembly process. Two typical serum proteins fibrinogen and bovine serum albumin enable formation of the anisotropic colloidal assembly but with a different subtle morphology. Furthermore, the obtained micron-sized magnetic colloidal assembly can be dissociated rapidly by adding a negative electrolyte in the medium due to the interference in the NP-protein interaction. However, the self-assembly process can be recycled based on the dissociated colloidal assembly.
Collapse
Affiliation(s)
- Yanbai Pei
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Peng Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Lehua Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
4
|
Mahmood AU, Yingling YG. All-Atom Simulation Method for Zeeman Alignment and Dipolar Assembly of Magnetic Nanoparticles. J Chem Theory Comput 2022; 18:3122-3135. [PMID: 35271259 DOI: 10.1021/acs.jctc.1c01253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (MNPs) can organize into novel structures in solutions with excellent order and unique geometries. However, studies of the self-assembly of smaller MNPs are challenging due to a complicated interplay between external magnetic fields and van der Waals, electrostatic, dipolar, steric, and hydrodynamic interactions. Here, we present a novel all-atom molecular dynamics simulation method to enable detailed studies of the dynamics, self-assembly, structure, and properties of MNPs as a function of core sizes and shapes, ligand chemistry, solvent properties, and external field. We demonstrate the use and effectiveness of the model by simulating the self-assembly of oleic acid ligand-functionalized magnetite (Fe3O4) nanoparticles, with spherical and cubic shapes, into rings, lines, chains, and clusters under a uniform external magnetic field. We found that the long-range electrostatic interactions can favor the formation of a chain over a ring, the ligands promote MNP cluster growth, and the solvent can reduce the rotational diffusion of the MNPs. The algorithm has been parallelized to take advantage of multiple processors of a modern computer and can be used as a plugin for the popular simulation software LAMMPS to study the behavior of small MNPs and gain insights into the physics and chemistry of different magnetic assembly processes with atomistic details.
Collapse
Affiliation(s)
- Akhlak U Mahmood
- Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Myrovali E, Papadopoulos K, Iglesias I, Spasova M, Farle M, Wiedwald U, Angelakeris M. Long-Range Ordering Effects in Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21602-21612. [PMID: 33929817 DOI: 10.1021/acsami.1c01820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT). Eventually, the fixation field dictates smaller particles to form chain structures in two steps, first forming clusters and then guiding chain formation via "cluster-cluster" interactions, whereas larger particles readily form chains via "particle-particle" interactions. In both cases, dipolar interactions between the neighboring nanoparticles augment, leading to a substantial increase in their collective magnetic features which in turn results in magnetic particle hyperthermia efficiency enhancement of up to one order of magnitude. This study provides new perspectives for magnetic nanoparticles by arranging them in chain formulations as enhanced performance magnetic actors in magnetically driven magnetic applications.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Kyrillos Papadopoulos
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Irene Iglesias
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| |
Collapse
|
6
|
Stanković I, Lizardi L, García C. Assembly of nanocube super-structures directed by surface and magnetic interactions. NANOSCALE 2020; 12:19390-19403. [PMID: 32945830 DOI: 10.1039/d0nr03485a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the stabilisation of clusters and lattices of cuboidal particles with long-ranged magnetic dipolar and short-ranged surface interactions. Two realistic systems were considered: one with magnetisation oriented in the [001] crystallographic direction and the other with magnetisation along the [111] direction. We have studied magnetic nanocube clusters first in the limit of T = 0 K intending to elucidate the structural genesis of low energy configurations and then analysed finite-temperature behaviour of the same systems in simulations. Our results demonstrate that dipolar coupling can stabilise nanoparticle assemblies with cubic, planar, and linear arrangements seen previously in experiments. While attractive surface energy supports the formation of super-cubes, repulsion results in the elongated structures in the form of rods and chains. We observe the stabilisation of the ferromagnetic planar arrangements of the cubes standing on their corners and in contact over edges. We illustrate that minimal energy structures depend only on the size of the assembly and balance of surface repulsion and magnetic dipolar coupling. The presented results are scalable to different particle sizes and material parameters.
Collapse
Affiliation(s)
- Igor Stanković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
| | - Luis Lizardi
- Departamento de Física & Centro Científico Tecnológico de Valparaíso-CCTVal, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso, Chile
| | - Carlos García
- Departamento de Física & Centro Científico Tecnológico de Valparaíso-CCTVal, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso, Chile
| |
Collapse
|
7
|
Abelmann L, Hageman TAG, Löthman PA, Mastrangeli M, Elwenspoek MC. Three-dimensional self-assembly using dipolar interaction. SCIENCE ADVANCES 2020; 6:eaba2007. [PMID: 32494725 PMCID: PMC7209989 DOI: 10.1126/sciadv.aba2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Interaction between dipolar forces, such as permanent magnets, generally leads to the formation of one-dimensional chains and rings. We investigated whether it was possible to let dipoles self-assemble into three-dimensional structures by encapsulating them in a shell with a specific shape. We found that the condition for self-assembly of a three-dimensional crystal is satisfied when the energies of dipoles in the parallel and antiparallel states are equal. Our experiments show that the most regular structures are formed using cylinders and cuboids and not by spheroids. This simple design rule will help the self-assembly community to realize three-dimensional crystals from objects in the micrometer range, which opens up the way toward previously unknown metamaterials.
Collapse
Affiliation(s)
- Leon Abelmann
- KIST Europe, Saarland University, Saarbrücken, Germany
- University of Twente, Enschede, Netherlands
| | - Tijmen A. G. Hageman
- KIST Europe, Saarland University, Saarbrücken, Germany
- University of Twente, Enschede, Netherlands
| | - Per A. Löthman
- KIST Europe, Saarland University, Saarbrücken, Germany
- University of Twente, Enschede, Netherlands
| | - Massimo Mastrangeli
- Electronic Components, Technology and Materials, Department of Microelectronics, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
8
|
Balcells L, Stanković I, Konstantinović Z, Alagh A, Fuentes V, López-Mir L, Oró J, Mestres N, García C, Pomar A, Martínez B. Spontaneous in-flight assembly of magnetic nanoparticles into macroscopic chains. NANOSCALE 2019; 11:14194-14202. [PMID: 31198921 DOI: 10.1039/c9nr02314c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Knowing the interactions controlling aggregation processes in magnetic nanoparticles is of strong interest in preventing or promoting nanoparticles' aggregation at wish for different applications. Dipolar magnetic interactions, proportional to the particle volume, are identified as the key driving force behind the formation of macroscopic aggregates for particle sizes above about 20 nm. However, aggregates' shape and size are also strongly influenced by topological ordering. 1-D macroscopic chains of several micrometer lengths are obtained with cube-shaped magnetic nanoparticles prepared by the gas-aggregation technique. Using an analytical model and molecular dynamics simulations, the energy landscape of interacting cube-shaped magnetic nanoparticles is analysed revealing unintuitive dependence of the force acting on particles with the displacement and explaining pathways leading to their assembly into long linear chains. The mechanical behaviour and magnetic structure of the chains are studied by a combination of atomic and magnetic force measurements, and computer simulation. The results demonstrate that [111] magnetic anisotropy of the cube-shaped nanoparticles strongly influences chain assembly features.
Collapse
Affiliation(s)
- Lluis Balcells
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|