1
|
Yang J, Zhang F, Liu S, Zhou X, Yang J, Xia Q, Zhong M. A high-performance broadband polarization-sensitive photodetector based on BiSeS nanowires. NANOSCALE 2025; 17:9346-9354. [PMID: 40105281 DOI: 10.1039/d4nr05031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Bismuth selenide (Bi2Se3) has emerged as a promising material for high-performance photodetectors due to its wideband spectral response, strong in-plane anisotropy, narrow bandgap, high absorption coefficient, and carrier mobility. However, inherent defects and states in Bi2Se3-based devices reduce optical conversion efficiency and stability. To address these challenges, we report the design and preparation of Bi2Se2.33S0.67 nanowires by a facile chemical vapor transport method. The individual Bi2Se2.33S0.67 nanowire photodetectors exhibit remarkable photoresponse over a broadband wavelength region ranging from ultraviolet C (254 nm) to near-infrared (1064 nm) with a low dark current of 0.015 nA and the measured maximum photoresponsivity of 2.52 A W-1 at 532 nm, together with a detectivity of around 5.2 × 1011 Jones. Furthermore, the photoresponse of photodetectors exhibits polarization angle sensitivity within a broadband range of 355 to 808 nm. The structural anisotropy of the Bi2Se2.33S0.67 crystal leads to a maximum dichroic ratio of about 1.8 at 355 nm. Additionally, cat images produced by this device further demonstrate the potential of the high-performance devices, and the effectiveness of photodetectors in deep learning image recognition validates their wide-spectrum, high-responsivity, and superior polarization-sensitive detection capabilities.
Collapse
Affiliation(s)
- Junda Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Fen Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Shuo Liu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Xinyun Zhou
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Jiacheng Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Qinglin Xia
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Mianzeng Zhong
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Buruiana AT, Mihai C, Kuncser V, Velea A. Advances in 2D Group IV Monochalcogenides: Synthesis, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1530. [PMID: 40271742 PMCID: PMC11989776 DOI: 10.3390/ma18071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
The field of newly developed two-dimensional (2D) materials with low symmetry and structural in-plane anisotropic properties has grown rapidly in recent years. The phosphorene analog of group IV monochalcogenides is a prominent subset of this group that has attracted a lot of attention because of its unique in-plane anisotropic electronic and optical properties, crystalline symmetries, abundance in the earth's crust, and environmental friendliness. This article presents a review of the latest research advancements concerning 2D group IV monochalcogenides. It begins with an exploration of the crystal structures of these materials, alongside their optical and electronic properties. The review continues by discussing the various techniques employed for the synthesis of layered group IV monochalcogenides, including both bottom-up methods such as vapor-phase deposition and top-down techniques like mechanical and/or liquid-phase exfoliation. In the final part, the article emphasizes the application of 2D group IV monochalcogenides, particularly in the fields of photocatalysis, photodetectors, nonlinear optics, sensors, batteries, and photovoltaic cells.
Collapse
Affiliation(s)
- Angel-Theodor Buruiana
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Romania
| | - Claudia Mihai
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
| | - Victor Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
| | - Alin Velea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
| |
Collapse
|
3
|
Tian Y, Liu H, Li J, Liu B, Liu F. Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:431. [PMID: 40137604 PMCID: PMC11945223 DOI: 10.3390/nano15060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025]
Abstract
With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors with both high responsivity and fast response time remain a challenging issue for all the researchers. This review paper is organized as follows. Introduction introduces the fundamental properties and broadband photodetection performances of transition metal dichalcogenides (TMDCs), perovskites, topological insulators, graphene, and black phosphorus (BP). This section provides an in-depth analysis of their unique optoelectronic properties and probes the intrinsic physical mechanism of broadband detection. In Two-Dimensional Material-Based Broadband Photodetectors, some innovative strategies are given to expand the detection wavelength range of 2D material-based photodetectors and enhance their overall performances. Among them, chemical doping, defect engineering, constructing heterostructures, and strain engineering methods are found to be more effective for improving their photodetection performances. The last section addresses the challenges and future prospects of 2D material-based broadband photodetectors. Furthermore, to meet the practical requirements for very large-scale integration (VLSI) applications, their work reliability, production cost and compatibility with planar technology should be paid much attention.
Collapse
Affiliation(s)
- Yan Tian
- School of Materials Science and Engineering, Northeastern University, No. 11, Wenhua Road, Shenyang 110819, China; (Y.T.); (J.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan 528300, China
| | - Hao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
| | - Jing Li
- School of Materials Science and Engineering, Northeastern University, No. 11, Wenhua Road, Shenyang 110819, China; (Y.T.); (J.L.)
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan 528300, China
| | - Baodan Liu
- School of Materials Science and Engineering, Northeastern University, No. 11, Wenhua Road, Shenyang 110819, China; (Y.T.); (J.L.)
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan 528300, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
4
|
Rahman S, Sharme RK, Terrones M, Rana MM. Recent Progress on Layered Sn and Pb-Based Mono Chalcogenides: Synthesis, Structure, Optical, and Thermoelectric Properties and Related Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1530. [PMID: 39330686 PMCID: PMC11435121 DOI: 10.3390/nano14181530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The research on two-dimensional materials has gained significant traction due to their potential for thermoelectric, optical, and other properties. The development of two-dimensional (2D) nanostructured-based TE generators and photodetectors has shown promising results. Over the years, researchers have played a crucial role in advancing this field, enhancing the properties of 2D materials through techniques such as doping, alloying, and various growth methods. Among these materials, black phosphorus, transition metal dichalcogenides, graphene, and IVA-VIA compounds stand out for their remarkable electronic, mechanical, and optical properties. This study presents a comprehensive review of the progress in the field, focusing on IVA-VIA compounds and their applications in TE and photodetector technologies. We summarize recent advancements in enhancing these materials' TE and optical properties and provide an overview of various synthesis techniques for their fabrication. Additionally, we highlight their potential applications as photodetectors in the infrared spectrum. This comprehensive review aims to equip researchers with a deep understanding of the TE and optical properties of 2DMs and their potential applications and to inspire further advancements in this field of research.
Collapse
Affiliation(s)
| | - Razia Khan Sharme
- Division of Physics, Engineering, Mathematics, Delaware State University, Dover, DE 19901, USA
| | - Mauricio Terrones
- Department of Physics, Chemistry and Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Mukti M Rana
- Division of Physics, Engineering, Mathematics, Delaware State University, Dover, DE 19901, USA
- Optical Science Center for Applied Research (OSCAR) and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
5
|
Liu S, Wang X, Xu N, Li R, Ou H, Li S, Zhu Y, Ke Y, Zhan R, Chen H, Deng S. A Flexible and Wearable Photodetector Enabling Ultra-Broadband Imaging from Ultraviolet to Millimeter-Wave Regimes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401631. [PMID: 38654695 PMCID: PMC11234453 DOI: 10.1002/advs.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Flexible and miniaturized photodetectors, offering a fast response across the ultraviolet (UV) to millimeter (MM) wave spectrum, are crucial for applications like healthcare monitoring and wearable optoelectronics. Despite their potential, developing such photodetectors faces challenges due to the lack of suitable materials and operational mechanisms. Here, the study proposes a flexible photodetector composed of a monolayer graphene connected by two distinct metal electrodes. Through the photothermoelectric effect, these asymmetric electrodes induce electron flow within the graphene channel upon electromagnetic wave illumination, resulting in a compact device with ultra-broadband and rapid photoresponse. The devices, with footprints ranging from 3 × 20 µm2 to 50 × 20 µm2, operate across a spectrum from 325 nm (UV) to 1.19 mm (MM) wave. They demonstrate a responsivity (RV) of up to 396.4 ± 5.1 mV W-1, a noise-equivalent power (NEP) of 8.6 ± 0.1 nW Hz- 0.5, and a response time as small as 0.8 ± 0.1 ms. This device facilitates direct imaging of shielded objects and material differentiation under simulated human body-wearing conditions. The straightforward device architecture, aligned with its ultra-broadband operational frequency range, is anticipated to hold significant implications for the development of miniaturized, wearable, and portable photodetectors.
Collapse
Affiliation(s)
- Shaojing Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Runli Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Hai Ou
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Shangdong Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Yongsheng Zhu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Yanlin Ke
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
6
|
Xu T, Qi L, Xu Y, Xiao S, Yuan Q, Niu R, Wang J, Tsang HK, Liu T, Cheng Z. Giant optical absorption of a PtSe 2-on-silicon waveguide in mid-infrared wavelengths. NANOSCALE 2024; 16:3448-3453. [PMID: 38189416 DOI: 10.1039/d3nr05983a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Low-dimensional platinum diselenide (PtSe2) is a promising candidate for high-performance optoelectronics in the short-wavelength mid-infrared band due to its high carrier mobility, excellent stability, and tunable bandgap. However, light usually interacts moderately with low-dimensional PtSe2, limiting the optoelectronic responses of PtSe2-based devices. Here we demonstrated a giant optical absorption of a PtSe2-on-silicon waveguide by integrating a ten-layer PtSe2 film on an ultra-thin silicon waveguide. The weak mode confinement in the ultra-thin waveguide dramatically increases the waveguide mode overlap with the PtSe2 film. Our experimental results show that the absorption coefficient of the PtSe2-on-silicon waveguide is in the range of 0.0648 dB μm-1 to 0.0704 dB μm-1 in a spectral region of 2200 nm to 2300 nm wavelengths. Furthermore, we also studied the optical absorption in an ultra-thin silicon microring resonator. Our study provides a promising approach to developing PtSe2-on-silicon hybrid optoelectronic integrated circuits.
Collapse
Affiliation(s)
- Tianping Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
| | - Liqiang Qi
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
| | - Yingqi Xu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shuqi Xiao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Quan Yuan
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Rui Niu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Jiaqi Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hon Ki Tsang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Tiegen Liu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
| | - Zhenzhou Cheng
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518055, China
- School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
| |
Collapse
|
7
|
Jin G, Kim SH, Han HJ. Synthesis and Future Electronic Applications of Topological Nanomaterials. Int J Mol Sci 2023; 25:400. [PMID: 38203574 PMCID: PMC10779379 DOI: 10.3390/ijms25010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last ten years, the discovery of topological materials has opened up new areas in condensed matter physics. These materials are noted for their distinctive electronic properties, unlike conventional insulators and metals. This discovery has not only spurred new research areas but also offered innovative approaches to electronic device design. A key aspect of these materials is now that transforming them into nanostructures enhances the presence of surface or edge states, which are the key components for their unique electronic properties. In this review, we focus on recent synthesis methods, including vapor-liquid-solid (VLS) growth, chemical vapor deposition (CVD), and chemical conversion techniques. Moreover, the scaling down of topological nanomaterials has revealed new electronic and magnetic properties due to quantum confinement. This review covers their synthesis methods and the outcomes of topological nanomaterials and applications, including quantum computing, spintronics, and interconnects. Finally, we address the materials and synthesis challenges that need to be resolved prior to the practical application of topological nanomaterials in advanced electronic devices.
Collapse
Affiliation(s)
- Gangtae Jin
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Seo-Hyun Kim
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| | - Hyeuk-Jin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| |
Collapse
|
8
|
Song TT, Huang WQ, Jiang KB, Chen WF, Zhou Y, Bian HY, Wang MS, Guo GC. Significant increase of the photoresponse range and conductivity for a chalcogenide semiconductor by viologen coating through charge transfer. MATERIALS HORIZONS 2023; 10:5677-5683. [PMID: 37791893 DOI: 10.1039/d3mh01241g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Widening the photoresponse range while enhancing the electrical properties of semiconductors could reduce the complexity and cost of photodetectors or increase the power conversion efficiency of solar cells. Surface doping through charge transfer with organic species is one of the most effective and widely used approaches to achieve this aim. It usually features easier preparation over other doping methods but is still limited by the low physicochemical stability and high cost of the used organic species or low improvement of electrical properties. This work shows unprecedented surface doping of semiconductors with highly stable, easily obtained, and strong electron-accepting viologen components, realizing the significant improvement of both the photoresponse range and conductivity. Coating the chalcogenide semiconductor KGaS2 with dimethyl viologen dichloride (MV) yields a charge-transfer complex (CTC) on the surface, which broadens the photoresponse range by nearly 300 nm and improves the conductivity by 5 orders of magnitude. The latter value surpasses all records obtained by surface doping through charge transfer with organic species.
Collapse
Affiliation(s)
- Tian-Tian Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| | - Wei-Qiang Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| | - Kai-Bin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| | - Wen-Fa Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| | - Yu Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| | - Hong-Yi Bian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China.
| |
Collapse
|
9
|
Zhang Y, Yan Y, Mi J, Wang S, Wang M, Guo G. Bottom-Up Photosynthesis of an Air-Stable Radical Semiconductor Showing Photoconductivity to Full Solar Spectrum and X-Ray. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302978. [PMID: 37541668 PMCID: PMC10558663 DOI: 10.1002/advs.202302978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Indexed: 08/06/2023]
Abstract
Single-component semiconductors with photoresponse to full solar spectrum are highly desirable to simplify the device structure of commercial photodetectors and to improve solar conversion or photocatalytic efficiency but remain scarce. This work reports bottom-up photosynthesis of an air-stable radical semiconductor using BiI3 and a photochromism-active benzidine derivative as a photosensitive functional motif. This semiconductor shows photoconductivity to full solar spectrum contributed by radical and non-radical forms of the benzidine derivative. It has also the potential to detect X-rays because of strong X-ray absorption coefficient. This finding opens up a new synthetic method for radical semiconductors and may find applications on extending photoresponsive ranges of perovskites, transition metal sulfides, and other materials.
Collapse
Affiliation(s)
- Yu Zhang
- College of ChemistryFuzhou UniversityFuzhouFujian350108P. R. China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350608P. R. China
| | - Yun‐Fan Yan
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350608P. R. China
| | - Jia‐Rong Mi
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350608P. R. China
| | - Shuai‐Hua Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350608P. R. China
| | - Ming‐Sheng Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350608P. R. China
| | - Guo‐Cong Guo
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350608P. R. China
| |
Collapse
|
10
|
Li Y, Huang B, Liu Y, Lan L, Ji Z. Sb 2Se 3/CdS/ZnO photodetectors based on physical vapor deposition for color imaging applications. OPTICS LETTERS 2023; 48:2583-2586. [PMID: 37186714 DOI: 10.1364/ol.487169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The reported antimony selenide (Sb2Se3) photodetectors (PDs) are still far away from color camera applications mainly due to the high operation temperature required in chemical vapor deposition (CVD) and the lack of high-density PD arrays. In this work, we propose a Sb2Se3/CdS/ZnO PD created by physical vapor deposition (PVD) operated at room temperature. Using PVD, a uniform film can be obtained, so the optimized PD has excellent photoelectric performance with high responsivity (250 mA/W), high detectivity (5.6 × 1012 Jones), low dark current (∼10-9 A), and short response time (rise: < 200 μs; decay: < 200 μs). With the help of advanced computational imaging technology, we successfully demonstrate color imaging applications by the single Sb2Se3 PD; thus, we expect this work can bring Sb2Se3 PDs in color camera sensors closer.
Collapse
|
11
|
Aftab S, Hegazy HH. Emerging Trends in 2D TMDs Photodetectors and Piezo-Phototronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205778. [PMID: 36732842 DOI: 10.1002/smll.202205778] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Indexed: 05/04/2023]
Abstract
The piezo-phototronic effect shows promise with regards to improving the performance of 2D semiconductor-based flexible optoelectronics, which will potentially open up new opportunities in the electronics field. Mechanical exfoliation and chemical vapor deposition (CVD) influence the piezo-phototronic effect on a transparent, ultrasensitive, and flexible van der Waals (vdW) heterostructure, which allows the use of intrinsic semiconductors, such as 2D transition metal dichalcogenides (TMD). The latest and most promising 2D TMD-based photodetectors and piezo-phototronic devices are discussed in this review article. As a result, it is possible to make flexible piezo-phototronic photodetectors, self-powered sensors, and higher strain tolerance wearable and implantable electronics for health monitoring and generation of piezoelectricity using just a single semiconductor or vdW heterostructures of various nanomaterials. A comparison is also made between the functionality and distinctive properties of 2D flexible electronic devices with a range of applications made from 2D TMDs materials. The current state of the research about 2D TMDs can be applied in a variety of ways in order to aid in the development of new types of nanoscale optoelectronic devices. Last, it summarizes the problems that are currently being faced, along with potential solutions and future prospects.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
- 2Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P. O. Box 9004, Saudi Arabia
| |
Collapse
|
12
|
Xiao P, Zhang S, Zhang L, Yang J, Shi C, Han L, Tang W, Zhu B. Visible Near-Infrared Photodetection Based on Ta 2NiSe 5/WSe 2 van der Waals Heterostructures. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094385. [PMID: 37177590 PMCID: PMC10181779 DOI: 10.3390/s23094385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The increasing interest in two-dimensional materials with unique crystal structures and novel band characteristics has provided numerous new strategies and paradigms in the field of photodetection. However, as the demand for wide-spectrum detection increases, the size of integrated systems and the limitations of mission modules pose significant challenges to existing devices. In this paper, we present a van der Waals heterostructure photodetector based on Ta2NiSe5/WSe2, leveraging the inherent characteristics of heterostructures. Our results demonstrate that this detector exhibits excellent broad-spectrum detection ability from the visible to the infrared bands at room temperature, achieving an extremely high on/off ratio, without the need for an external bias voltage. Furthermore, compared to a pure material detector, it exhibits a fast response and low dark currents (~3.6 pA), with rise and fall times of 278 μs and 283 μs for the response rate, respectively. Our findings provide a promising method for wide-spectrum detection and enrich the diversity of room-temperature photoelectric detection.
Collapse
Affiliation(s)
- Pan Xiao
- College of Science, Zhejiang University of Technology, 288 Liu-He Road, Hangzhou 310023, China
| | - Shi Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
| | - Libo Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
- State Key Laboratory for Infrared, Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China
| | - Jialiang Yang
- College of Science, Zhejiang University of Technology, 288 Liu-He Road, Hangzhou 310023, China
| | - Chaofan Shi
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
| | - Li Han
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
- State Key Laboratory for Infrared, Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China
| | - Weiwei Tang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
| | - Bairen Zhu
- College of Science, Zhejiang University of Technology, 288 Liu-He Road, Hangzhou 310023, China
| |
Collapse
|
13
|
Zhong A, Zhou Y, Jin H, Yu H, Wang Y, Luo J, Huang L, Sun Z, Zhang D, Fan P. Superior Performances of Self-Driven Near-Infrared Photodetectors Based on the SnTe:Si/Si Heterostructure Boosted by Bulk Photovoltaic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206262. [PMID: 36642832 DOI: 10.1002/smll.202206262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The upsurge of new materials that can be used for near-infrared (NIR) photodetectors operated without cooling is crucial. As a novel material with a small bandgap of ≈0.28 eV, the topological crystalline insulator SnTe has attracted considerable attention. Herein, this work demonstrates self-driven NIR photodetectors based on SnTe/Si and SnTe:Si/Si heterostructures. The SnTe/Si heterostructure has a high detectivity D* of 3.3 × 1012 Jones. By Si doping, the SnTe:Si/Si heterostructure reduces the dark current density and increases the photocurrent by ≈1 order of magnitude simultaneously, which improves the detectivity D* by ≈2 orders of magnitude up to 1.59 × 1014 Jones. Further theoretical analysis indicates that the improved device performance may be ascribed to the bulk photovoltaic effect (BPVE), in which doped Si atoms break the inversion symmetry and thus enable the generation of additional photocurrents beyond the heterostructure. In addition, the external quantum efficiency (EQE) measured at room temperature at 850 nm increases by a factor of 7.5 times, from 38.5% to 289%. A high responsivity of 1979 mA W-1 without bias and fast rising time of 8 µs are also observed. The significantly improved photodetection achieved by the Si doping is of great interest and may provide a novel strategy for superior photodetectors.
Collapse
Affiliation(s)
- Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yue Zhou
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Hao Jin
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Huimin Yu
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yunkai Wang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jingting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Longbiao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Zhenhua Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Dongping Zhang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
14
|
Verma S, Yadav R, Pandey A, Kaur M, Husale S. Investigating active area dependent high performing photoresponse through thin films of Weyl Semimetal WTe 2. Sci Rep 2023; 13:197. [PMID: 36604468 PMCID: PMC9814664 DOI: 10.1038/s41598-022-27200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
WTe2 is one of the wonder layered materials, displays interesting overlapping of electron-hole pairs, opening of the surface bandgap, anisotropy in its crystal structure and very much sought appealing material for room temperature broadband photodection applications. Here we report the photoresponse of WTe2 thin films and microchannel devices fabricated on silicon nitride substrates. A clear sharp rise in photocurrent observed under the illumination of visible (532 nm) and NIR wavelengths (1064 nm). The observed phoresponse is very convincing and repetitive for ON /OFF cycles of laser light illumination. The channel length dependence of photocurrent is noticed for few hundred nanometers to micrometers. The photocurrent, rise & decay times, responsivity and detectivity are studied using different channel lengths. Strikingly microchannel gives few orders of greater responsivity compared to larger active area investigated here. The responsivity and detectivity are observed as large as 29 A/W and 3.6 × 108 Jones respectively. The high performing photodetection properties indicate that WTe2 can be used as a broad band material for future optoelectronic applications.
Collapse
Affiliation(s)
- Sahil Verma
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.418099.dNational Physical Laboratory, Council of Scientific and Industrial Research, Dr. K S Krishnan Road, New Delhi, 110012 India
| | - Reena Yadav
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.418099.dNational Physical Laboratory, Council of Scientific and Industrial Research, Dr. K S Krishnan Road, New Delhi, 110012 India
| | - Animesh Pandey
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.418099.dNational Physical Laboratory, Council of Scientific and Industrial Research, Dr. K S Krishnan Road, New Delhi, 110012 India
| | - Mandeep Kaur
- grid.418099.dNational Physical Laboratory, Council of Scientific and Industrial Research, Dr. K S Krishnan Road, New Delhi, 110012 India
| | - Sudhir Husale
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.418099.dNational Physical Laboratory, Council of Scientific and Industrial Research, Dr. K S Krishnan Road, New Delhi, 110012 India
| |
Collapse
|
15
|
Li X, Ruan S, Zhu H. SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2777. [PMID: 36014642 PMCID: PMC9413584 DOI: 10.3390/nano12162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
High responsivity has been recently achieved in a graphene-based hybrid photogating mechanism photodetector using two-dimensional (2D) semiconductor nanosheets or quantum dots (QDs) sensitizers. However, there is a major challenge of obtaining photodetectors of fast photoresponse time and broad spectral photoresponse at room temperature due to the high trap density generated at the interface of nanostructure/graphene or the large band gap of QDs. The van der Waals interfacial coupling in small bandgap 2D/graphene heterostructures has enabled broadband photodetection. However, most of the photocarriers in the hybrid structure originate from the photoconductive effect, and it is still a challenge to achieve fast photodetection. Here, we directly grow SnS nanoflakes on graphene by the physical vapor deposition (PVD) method, which can avoid contamination between SnS absorbing layer and graphene and also ensures the high quality and low trap density of SnS. The results demonstrate the extended broad-spectrum photoresponse of the photodetector over a wide spectral range from 375 nm to 1550 nm. The broadband photodetecting mechanisms based on a photogating effect induced by the transferring of photo-induced carrier and photo-hot carrier are discussed in detail. More interestingly, the device also exhibits a large photoresponsivity of 41.3 AW-1 and a fast response time of around 19 ms at 1550 nm. This study reveals strategies for broadband response and sensitive photodetectors with SnS nanoflakes/graphene.
Collapse
Affiliation(s)
- Xiangyang Li
- College of Applied Technology, Shenzhen University, Shenzhen 518060, China
| | - Shuangchen Ruan
- College of New Energy and New Materials, Shenzhen Technology University, Shenzhen 518118, China
| | - Haiou Zhu
- College of New Energy and New Materials, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
16
|
Yan Z, Yang H, Yang Z, Ji C, Zhang G, Tu Y, Du G, Cai S, Lin S. Emerging Two-Dimensional Tellurene and Tellurides for Broadband Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200016. [PMID: 35244332 DOI: 10.1002/smll.202200016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
As with all stylish 2D functional materials, tellurene and tellurides possessing excellent physical and chemical properties such as high environmental stability, tunable narrow bandgap, and lower thermal conductivity, have aroused the great interest of the researchers. These properties of such materials also form the basis for relatively newfangled scholarly fields involving advanced topics, especially for broadband photodetectors. Integrating the excellent properties of many 2D materials, tellurene/telluride-based photodetectors show great flexibility, higher frequency response or faster time response, high signal-to-noise ratio, and so on, which make them leading the frontier of photodetector research. To fully understand the excellent properties of tellurene/tellurides and their optoelectronic applications, the recent advances in tellurene/telluride-based photodetectors are maximally summarized. Benefiting from the solid research in this field, the challenges and opportunities of tellurene/tellurides for future optoelectronic applications are also discussed in this review, which might provide possibilities for the realization of state-of-the-art high-performance tellurene/telluride-based devices.
Collapse
Affiliation(s)
- Zihan Yan
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Hao Yang
- College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Zhuo Yang
- College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Chengao Ji
- College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Guangyu Du
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hunghom, Kowloon, 999077, Hong Kong
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hunghom, Kowloon, 999077, Hong Kong
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|
17
|
Yu W, Gong K, Li Y, Ding B, Li L, Xu Y, Wang R, Li L, Zhang G, Lin S. Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105383. [PMID: 35048521 DOI: 10.1002/smll.202105383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Indexed: 06/14/2023]
Abstract
2D materials are now at the forefront of state-of-the-art nanotechnologies due to their fascinating properties and unique structures. As expected, low-cost, high-volume, and high-quality 2D materials play an important role in the applications of flexible devices. Although considerable progress has been achieved in the integration of a series of novel 2D materials beyond graphene into flexible devices, a lot remains to be known. At this stage of their development, the key issues concern how to make further improvements to high-performance and scalable-production. Herein, recent progress in the quest to improve the current state of the art for 2D materials beyond graphene is reviewed. Namely, the properties and synthesis techniques of 2D materials are first introduced. Then, both the advantages and challenges of these 2D materials for flexible devices are also highlighted. Finally, important directions for future advancements toward efficient, low-cost, and stable flexible devices are outlined.
Collapse
Affiliation(s)
- Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Kaiwen Gong
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yanyong Li
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Binbin Ding
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lei Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yongkang Xu
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Rong Wang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lianbi Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
18
|
Chen T, Jiang HB, Jiang KB, Hu DL, Cai LZ, Wang MS, Guo GC. Photochromic Semiconductive Hydrogen-Bonded Organic Framework (HOF) with Broadband Absorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11619-11625. [PMID: 35199511 DOI: 10.1021/acsami.1c23328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiconductors with broadband photoelectric response have important practical needs in many aspects such as solar energy conversion, photocatalysis, and photodetection. We synthesized the first photochromic semiconductive hydrogen-bonded organic framework (HOF), [H2(bpyb)](H2PO4)2·2H2O (1), using the polycyclic viologen cation [H2(bpyb)] (bpyb = 1,4-bis(tetrapyridyl)benzene). After 1 s of xenon lamp irradiation, compound 1 showed a visible color change from the initial yellowish to dark purple after continuous irradiation. The photoinduced radical product has an absorption band covering 200-1700 nm, which is wider than the absorption ranges of silicon and perovskites. It produced photocurrent when irradiated with a xenon lamp or a laser (355, 532, or 808 nm). The on/off ratio of the current (Iirr/Idark) can be as high as 300 times under the irradiation of the 808 nm laser with a power of 1.9 W cm-2. In addition, under the 808 nm light source, the on/off ratio of 1B is 35 times that of 1A.
Collapse
Affiliation(s)
- Tong Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Hui-Bo Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Kai-Bin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - De-Lin Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Li-Zhen Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
19
|
Cao B, Ye Z, Yang L, Gou L, Wang Z. Recent progress in Van der Waals 2D PtSe 2. NANOTECHNOLOGY 2021; 32:412001. [PMID: 34157685 DOI: 10.1088/1361-6528/ac0d7c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
As a new member in two-dimensional (2D) transition metal dichalcogenides (TMDCs) family, platinum diselenium (PtSe2) has many excellent properties, such as the layer-dependent band gap, high carrier mobility, high photoelectrical coupling, broadband response, etc, thus it shows good promising application in room temperature photodetectors, broadband photodetectors, transistors and other fields. Furthermore, compared with other TMDCs, PtSe2is chemical inert in ambient, showing nano-devices potential with higher performance and stability. However, up to now, the synthesis and its device applications are in its early stage. This review systematically summarized the state of the art of PtSe2from its structure, property, synthesis and potential application. Finally, the current challenges and future perspectives are outlined for the applications of 2D PtSe2.
Collapse
Affiliation(s)
- Banglin Cao
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Zimeng Ye
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Li Gou
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu-610065, People's Republic of China
| |
Collapse
|
20
|
Wang PH, Yu CM, Yu XQ, Wang MS, Guo GC. UV-vis/X-ray/thermo-induced synthesis and UV-SWIR photoresponsive property of a mixed-valence viologen molybdate semiconductor. Chem Commun (Camb) 2021; 57:5550-5553. [PMID: 33969841 DOI: 10.1039/d1cc00614b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new design strategy through the synergy of Mo(vi)-Mo(v) intervalence charge transfer and π(radical)-π(radical/cation) interactions is proposed to obtain semiconductors with photoresponsive ranges covering the whole UV-SWIR (ultraviolet-shortwave near-infrared; ca. 250-3000 nm) region. With this strategy, a viologen-based molybdate semiconductor with a UV-SWIR photoresponsive range was obtained through UV/X-ray irradiation or thermal annealing. The thermally annealed semiconductor has the highest conversion and the best photocurrent response in the range of 355-2400 nm.
Collapse
Affiliation(s)
- Peng-Hao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Cao-Ming Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Xiao-Qing Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| |
Collapse
|
21
|
Liu G, Bao X, Dong W, Wei Q, Mu H, Zhu W, Wang B, Li J, Shabbir B, Huang Y, Xing G, Yu J, Gao P, Shao H, Li X, Bao Q. Two-Dimensional Bi 2Sr 2CaCu 2O 8+δ Nanosheets for Ultrafast Photonics and Optoelectronics. ACS NANO 2021; 15:8919-8929. [PMID: 33969996 DOI: 10.1021/acsnano.1c01567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) Bi2Sr2CaCu2O8+δ (BSCCO) is a emerming class of 2D materials with high-temperature superconductivity for which their electronic transport properties have been intensively studied. However, the optical properties, especially nonlinear optical response and the photonic and optoelectronic applications of normal state 2D Bi2Sr2CaCu2O8+δ (Bi-2212), have been largely unexplored. Here, the linear and nonlinear optical properties of mechanically exfoliated Bi-2212 thin flakes are systematically investigated. 2D Bi-2212 shows a profound plasmon absorption in near-infrared wavelength range with ultrafast carrier dynamics as well as tunable nonlinear absorption depending on the thickness. We demonstrated that 2D Bi-2212 can be applied not only as an effective mode-locker for ultrashort pulse generation but also as an active medium for infrared light detection due to its plasmon absorption. Our results may trigger follow up studies on the optical properties of 2D BSCCO and demonstrate potential opportunities for photonic and optoelectronic applications.
Collapse
Affiliation(s)
- Guanyu Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Xiaozhi Bao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Weikang Dong
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Haoran Mu
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Wenguo Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Jianding Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Babar Shabbir
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Yuan Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Jianhui Yu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Peng Gao
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Huaiyu Shao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Jiang H, Sun C, Yu CM, Wang MS, Guo GC. Broadband Photoresponsive Bismuth Halide Hybrid Semiconductors Built with π-Stacked Photoactive Polycyclic Viologen. Inorg Chem 2021; 60:5538-5544. [PMID: 33830749 DOI: 10.1021/acs.inorgchem.0c03375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoresponse ranges of commercially prevailing photoelectric semiconductors, typically Si and InGaAs, are far from fully covering the whole solar spectrum (∼295-2500 nm), resulting in insufficient solar energy conversion or narrow wave bands for photoelectric detection. Recent studies have shown that infinite π-aggregation of viologen radicals can provide semiconductors with a photoelectric response range covering the solar spectrum. However, controlled assembly of an infinite π-aggregate is still a great challenge in material design. Through directional self-assembly of electron-transfer photoactive polycyclic ligands, two crystalline inorganic-organic hybrid photochromic viologen-based bismuth halide semiconductors, ((Me)3pytpy)[BiCl6]·2H2O [1; (Me)3pytpy = N,N',N″-trimethyl-2,4,6-tris(4-pyridyl)pyridine] and ((Me)3pytpy)[Bi2Cl9]·H2O (2), have been synthesized. They represent the first series of pytpy-based photochromic compounds. After photoinduced coloration, the conductivities of both 1 and 2 increased. The radical products have electron absorption bands in the range of 200-1600 nm, exceeding that of Si. Both the conductivity and the photocurrent intensity of 2 are stronger than those of 1, due to better planarity, tighter π-stacking, and higher degrees of overlap of ((Me)3pytpy)3+ cations. This study not only provides a new design idea for synthesizing radical-based multispectral photoelectric semiconductors but also enriches the family of electron-transfer photochromic compounds.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cai Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Cao-Ming Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
23
|
Huang SM, Hung JL, Chou M, Chen CY, Liu FC, Chen RS. The Highly Uniform Photoresponsivity from Visible to Near IR Light in Sb 2Te 3 Flakes. SENSORS 2021; 21:s21041535. [PMID: 33672142 PMCID: PMC7926365 DOI: 10.3390/s21041535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Broadband photosensors have been widely studied in various kinds of materials. Experimental results have revealed strong wavelength-dependent photoresponses in all previous reports. This limits the potential application of broadband photosensors. Therefore, finding a wavelength-insensitive photosensor is imperative in this application. Photocurrent measurements were performed in Sb2Te3 flakes at various wavelengths ranging from visible to near IR light. The measured photocurrent change was insensitive to wavelengths from 300 to 1000 nm. The observed wavelength response deviation was lower than that in all previous reports. Our results show that the corresponding energies of these photocurrent peaks are consistent with the energy difference of the density of state peaks between conduction and valence bands. This suggests that the observed photocurrent originates from these band structure peak transitions under light illumination. Contrary to the most common explanation that observed broadband photocurrent carrier is mainly from the surface state in low-dimensional materials, our experimental result suggests that bulk state band structure is the main source of the observed photocurrent and dominates the broadband photocurrent.
Collapse
Affiliation(s)
- Shiu-Ming Huang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Correspondence:
| | - Jai-Lung Hung
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Mitch Chou
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, TCECM, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Yang Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.C.); (F.-C.L.); (R.-S.C.)
| | - Fang-Chen Liu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.C.); (F.-C.L.); (R.-S.C.)
| | - Ruei-San Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.C.); (F.-C.L.); (R.-S.C.)
| |
Collapse
|
24
|
Pandey A, Yadav R, Kaur M, Singh P, Gupta A, Husale S. High performing flexible optoelectronic devices using thin films of topological insulator. Sci Rep 2021; 11:832. [PMID: 33436932 PMCID: PMC7804467 DOI: 10.1038/s41598-020-80738-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Topological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.
Collapse
Affiliation(s)
- Animesh Pandey
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Reena Yadav
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Mandeep Kaur
- grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Preetam Singh
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Anurag Gupta
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| | - Sudhir Husale
- grid.419701.a0000 0004 1796 3268Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India ,grid.419701.a0000 0004 1796 3268Council of Scientific and Industrial Research, National Physical Laboratory, Dr. K. S Krishnan Road, New Delhi, 110012 India
| |
Collapse
|
25
|
Liu H, Liu Y, Dong S, Xu H, Wu Y, Hao L, Cao B, Li M, Wang Z, Han Z, Yan K. Photothermoelectric SnTe Photodetector with Broad Spectral Response and High On/Off Ratio. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49830-49839. [PMID: 33095577 DOI: 10.1021/acsami.0c15639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A broadband photodetector with high performance is highly desirable for the optoelectric and sensing application. Herein, we report a "photo-thermo-electric" (PTE) detector based on an ultrathin SnTe film. The (001)-oriented SnTe films with the wafer size scale are epitaxially grown on the surface of sodium chloride crystals by a scalable sputtering method. Due to the giant PTE effect under laser spot excitation on the asymmetric position between two terminals, a built-in electrical field is produced to drive bulk carriers for a self-powered photodetector, leading to a broad spectral response in the wavelength range from 404 nm to 10.6 μm far beyond the limitation of the energy band gap. Significantly, the photodetector displays a high on/off photoswitching ratio of over 105 with a suppressed dark current, which is 4-5 orders of magnitude higher than that of other reported SnTe-based detectors. Under zero external bias, the device yields the highest detectivity of ∼1.3 × 1010 cm Hz1/2 W-1 with a corresponding responsivity of ∼3.9 mA W-1 and short rising/falling times of ∼78/84 ms. Furthermore, the photodetector transferred onto the flexible template exhibits excellent mechanical flexibility over 300 bending cycles. These findings offer feasible strategies toward designing and developing low-power-consumption wearable optoelectronics with competitive performance.
Collapse
Affiliation(s)
- Hui Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
| | - Yunjie Liu
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
| | - Shichang Dong
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
| | - Hanyang Xu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
| | - Yupeng Wu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
| | - Lanzhong Hao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
| | - Banglin Cao
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Mingjie Li
- School of Environment and Energy, State Key 426 Laboratory of Luminescent Materials and Devices, South China University of Technology, 429 Guangzhou, Guangdong 510006, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Zhide Han
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
| | - Keyou Yan
- School of Environment and Energy, State Key 426 Laboratory of Luminescent Materials and Devices, South China University of Technology, 429 Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
26
|
Xu H, Hao L, Liu H, Dong S, Wu Y, Liu Y, Cao B, Wang Z, Ling C, Li S, Xu Z, Xue Q, Yan K. Flexible SnSe Photodetectors with Ultrabroad Spectral Response up to 10.6 μm Enabled by Photobolometric Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35250-35258. [PMID: 32660231 DOI: 10.1021/acsami.0c09561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A broad spectral response is highly desirable for radiation detection in modern optoelectronics; however, it still remains a great challenge. Herein, we report a novel ultrabroadband photodetector based on a high-quality tin monoselenide (SnSe) thin film, which is even capable of detecting photons with energies far below its optical band gap. The wafer-size SnSe ultrathin films are epitaxially grown on sodium chloride via the 45° in-plane rotation by employing a sputtering method. The photodetector delivers sensitive detection to ultraviolet-visible-near infrared (UV-Vis-NIR) lights in the photoconductive mode and shows an anomalous response to long-wavelength infrared at room temperature. Under the mid-infrared light of 10.6 μm, the fabricated photodetector exhibits a large photoresponsivity of 0.16 A W-1 with a fast response rate, which is ∼3 orders of magnitude higher than other results. The thermally induced carriers from the photobolometric effect are responsible for the sub-bandgap response. This mechanism is confirmed by a temperature coefficient of resistance of -2.3 to 4.4% K-1 in the film, which is comparable to that of the commercial bolometric detectors. Additionally, the flexible device transferred onto polymer templates further displays high mechanical durability and stability over 200 bending cycles, indicating great potential toward developing wearable optoelectronic devices.
Collapse
Affiliation(s)
- Hanyang Xu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Lanzhong Hao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Hui Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Shichang Dong
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Yupeng Wu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Yunjie Liu
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Banglin Cao
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Cuicui Ling
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Shouxi Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Zhijie Xu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Qingzhong Xue
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
27
|
Zhang Y, Tang L, Teng KS. High performance broadband photodetectors based on Sb 2Te 3/n-Si heterostructure. NANOTECHNOLOGY 2020; 31:304002. [PMID: 32235040 DOI: 10.1088/1361-6528/ab851c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the rapid development of optoelectronic devices, photodetectors have triggered unprecedented promise in the field of optical communication, environmental monitoring, biological imaging, chemical sensing. At the same time, there is a higher requirement for photodetectors. It is still a huge challenge for photodetectors that possess excellent performance, low cost and broad range photoresponse from ultraviolet to infrared. In this work, a facile, low cost growth of Sb2Te3 thin film using magnetic sputtering was performed. After rapid annealing treatment, the crystallinity of the thin film was transformed from amorphous to polycrystalline. Ultraviolet-visible-infrared absorption study of the thin film revealed broad absorption range, which is ideal for use in broadband photodetectors. Such photodetectors can find many important applications in communication, data security, environmental monitoring and defense technology etc. A prototype photodetector, consisting of Sb2Te3/n-Si heterostructure, was produced and characterized. The device demonstrated a significant photoelectric response at a broad spectral range of between 250 and 2400 nm. The maximum responsivity and detectivity of the device were 270 A W-1 and 1.28 × 1013 Jones, respectively, under 2400 nm illumination. Therefore, the results showed the potential use of Sb2Te3 thin film in developing high performance broadband photodetectors.
Collapse
Affiliation(s)
- Yuping Zhang
- Kunming Institute of Physics, Kunming 650223, People's Republic of China. Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, No.31 East Jiaochang Road, Kunming 650223, People's Republic of China
| | | | | |
Collapse
|
28
|
Electrically Stimulated Band Alignment Transit in Black Phosphorus/β-Ga2O3 Heterostructure Dual-band Photodetector. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0177-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Liu J, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y, Lei W. Ultrathin High-Quality SnTe Nanoplates for Fabricating Flexible Near-Infrared Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31810-31822. [PMID: 32585086 DOI: 10.1021/acsami.0c07847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work demonstrates a controlled van der Waals growth of two-dimensional SnTe nanoplates on mica substrates and their applications in flexible near-infrared photodetectors. The growth of nonlayered rock-salt structured SnTe crystals into two-dimensional SnTe nanoplate structures is mainly caused by the two-dimensional nature of the mica surface, which also results in the ultrathin nanoplates obtained (3.6 nm, equivalent to 6 monolayers). Furthermore, it is found that the shape of the SnTe nanoplates can be well engineered by changing their growth temperature due to the competition between the surface energy of the {100} crystallographic plane and that of the {111} plane. As a result of the favorable physical properties of topological crystalline insulators such as metallic surface (high electron mobility) and narrow bandgap, near-infrared photodetectors based on single SnTe nanoplate with the thickness of 3.6 nm present excellent device performance with a responsivity of 698 mA/W, a specific detectivity of 3.89 × 108 jones, and an external quantum efficiency of 88.5% under the illumination of a 980 nm laser at room temperature (300 K) without applying a gate voltage (Vg). Upon increasing the gate voltage from -30 to 30 V, the detector responsivity increases from 2.96 to 723 mA/W and the detector detectivity increases from 2.4 × 106 to 5.3 × 108 jones. Furthermore, upon increasing the thickness of SnTe nanoplate from 3.6 to 35 nm, the detector responsivity increases from 0.698 to 1.468 A/W. The device performance measured after bending for 300 times as well as after bending with different radii presents no obvious degradation, which exhibits the excellent flexibility of the SnTe nanoplate detectors. These results not only contribute to a deep understanding of the mechanisms of the van der Waals growth of nonlayered materials into two-dimensional structure but also demonstrate the immense potential of SnTe nanoplates to be used in flexible near-infrared detectors.
Collapse
Affiliation(s)
- Junliang Liu
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Xiao Li
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Han Wang
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Guang Yuan
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Alexandra Suvorova
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Sarah Gain
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Yongling Ren
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| |
Collapse
|
30
|
Hao L, Du Y, Wang Z, Wu Y, Xu H, Dong S, Liu H, Liu Y, Xue Q, Han Z, Yan K, Dong M. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity. NANOSCALE 2020; 12:7358-7365. [PMID: 32207508 DOI: 10.1039/d0nr00319k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Due to its excellent electrical and optical properties, tin selenide (SnSe), a typical candidate of two-dimensional (2D) semiconductors, has attracted great attention in the field of novel optoelectronics. However, the large-area growth of high-quality SnSe films still remains a great challenge, which limits their practical applications. Here, wafer-size SnSe ultrathin films with high uniformity and crystallization were deposited via a scalable magnetron sputtering method. The results showed that the SnSe photodetector was highly sensitive to a broad range of wavelengths in the UV-visible-NIR range, especially showing an extremely high responsivity of 277.3 A W-1 with the corresponding external quantum efficiency of 8.5 × 104% and detectivity of 7.6 × 1011 Jones. These figures of merits are among the best performances for the sputter-fabricated 2D photodetector devices. The photodetecting mechanisms based on a photogating effect induced by the trapping effect of localized defects are discussed in detail. The results indicate that the few-layered SnSe films obtained from sputtering growth have great potential in the design of high-performance photodetector arrays.
Collapse
Affiliation(s)
- Lanzhong Hao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang B, Huang Z, Tang P, Luo S, Liu Y, Li J, Qi X. One-pot synthesized Bi 2Te 3/graphene for a self-powered photoelectrochemical-type photodetector. NANOTECHNOLOGY 2020; 31:115201. [PMID: 31747652 DOI: 10.1088/1361-6528/ab5970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bismuth telluride (Bi2Te3) is a typical topological insulator, which possesses a narrow band gap and exhibits fascinating performance in the photodetector field. In this work, we fabricated a Bi2Te3/graphene heterostructure via a facile one-pot hydrothermal method. The as-prepared composites were used as the electrode materials for the photoelectrochemical (PEC)-type photodetector. From the results of PEC tests, we obviously found that the Bi2Te3/graphene heterostructure offers a remarkable improvement in photoresponse compared to that of sole Bi2Te3, and effectively demonstrates effective photocarrier generation and transfer at the interface between the graphene and Bi2Te3, which can enhance the properties of the photoresponse. Moreover, owing to the self-powered ability of the PEC-type photodetector, it can work under the bias potential of 0 V and exhibits a prominent photoresponse which can reach 2.2 mA W-1. Also, the photocurrent density of the prepared Bi2Te3/graphene heterostructure-based photodetector can almost linearly rise with the increased irradiation power density. Even if the light intensity was reduced to 40 mW cm-2, the photocurrent density could also reach 67 μA cm-2, which ensures the photodetection ability of the as-prepared Bi2Te3/graphene under low light intensity. The excellent performance of a Bi2Te3/graphene heterostructure for a PEC-type photodetector holds great promise in the field of photoelectric detection.
Collapse
Affiliation(s)
- Bo Wang
- School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Yu XQ, Sun C, Liu BW, Wang MS, Guo GC. Directed self-assembly of viologen-based 2D semiconductors with intrinsic UV-SWIR photoresponse after photo/thermo activation. Nat Commun 2020; 11:1179. [PMID: 32132532 PMCID: PMC7055315 DOI: 10.1038/s41467-020-14986-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022] Open
Abstract
Extending photoresponse ranges of semiconductors to the entire ultraviolet–visible (UV)–shortwave near-infrared (SWIR) region (ca. 200–3000 nm) is highly desirable to reduce complexity and cost of photodetectors or to promote power conversion efficiency of solar cells. The observed up limit of photoresponse for organic-based semiconductors is about 1800 nm, far from covering the UV–SWIR region. Here we develop a cyanide-bridged layer-directed intercalation approach and obtain a series of two viologen-based 2D semiconductors with multispectral photoresponse. In these compounds, infinitely π-stacked redox-active N-methyl bipyridinium cations with near-planar structures are sandwiched by cyanide-bridged MnII–FeIII or ZnII–FeIII layers. Radical–π interactions among the infinitely π-stacked N-methyl bipyridinium components favor the extension of absorption range. Both semiconductors show light/thermo-induced color change with the formation of stable radicals. They have intrinsic photocurrent response in the range of at least 355–2400 nm, which exceeds all reported values for known single-component organic-based semiconductors. Developing new materials with broadband photoresponse is highly desirable for realizing commercial photodetectors with extended detection ranges. Here, the authors report a cyanide-bridged layer-directed intercalation approach to design viologen compounds with enhanced broadband photoresponse.
Collapse
Affiliation(s)
- Xiao-Qing Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, 350002, Fuzhou, Fujian, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Cai Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, 350002, Fuzhou, Fujian, China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, 350002, Fuzhou, Fujian, China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, 350002, Fuzhou, Fujian, China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, 350002, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Abstract
Our review provides a comprehensive overview of the latest evolution of broadband photodetectors (BBPDs) based on 2D materials (2DMs). We begin with BBPDs built on various 2DM channels, including narrow-bandgap 2DMs, 2D topological semimetals, 2D charge density wave compounds, and 2D heterojunctions. Then, we introduce defect-engineered 2DM BBPDs, including vacancy engineering, heteroatom incorporation, and interfacial engineering. Subsequently, we summarize 2DM based mixed-dimensional (0D-2D, 1D-2D, 2D-3D, and 0D-2D-3D) BBPDs. Finally, we provide several viewpoints for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | | |
Collapse
|