1
|
Sun Y, Abella L, Emge TJ, Zhu S, Li Y, Ferraro I, Li A, Stevenson S, Poblet JM, Rodríguez‐Fortea A, Zhang J. Inverse Electron Demand Diels-Alder Reaction on M 3N@C 80 (M=Lu, Sc): Reactivity and Reversibility Enable Chemical Separation of Metallofullerenes. Angew Chem Int Ed Engl 2025; 64:e202424776. [PMID: 39924446 PMCID: PMC12001181 DOI: 10.1002/anie.202424776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Endohedral metallofullerenes are chemically more inert compared to empty fullerenes, primarily due to their intramolecular electron transfer. In this work, we report an inverse electron demand Diels-Alder (IEDDA) reaction on M3N@C80 (M=Lu, Sc), where they show significantly higher reactivity than empty fullerenes. The molecular structures of the [4+2] cycloadducts were unambiguously characterized. Moreover, the cycloadducts can fully revert to pristine M3N@C80 via retro-cycloaddition upon thermal treatment. With the unusual reactivity and reversibility, the IEDDA reaction enables an effective separation approach for metallofullerenes from their soot extracts, opening path to efficient and economical scale-up synthesis of metallofullerenes in laboratory and industrial settings.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Laura Abella
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Sheng Zhu
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Yanbang Li
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Ian Ferraro
- Department of ChemistryUniversity of New Hampshire23 Academic WayDurham, NH03824USA
| | - Anyin Li
- Department of ChemistryUniversity of New Hampshire23 Academic WayDurham, NH03824USA
| | - Steven Stevenson
- Department of Chemistry and Biochemistry and FIRST Molecules CenterPurdue University Fort WayneFort WayneIN 46805USA
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Antonio Rodríguez‐Fortea
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| |
Collapse
|
2
|
Shi C, Xu G, Qiu H, Li Y, Lu X, Jiang J, Wang L. Tröger's base-embedded macrocycles with chirality. Chem Commun (Camb) 2025; 61:2450-2467. [PMID: 39785990 DOI: 10.1039/d4cc05134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The birth and development of supramolecular chemistry have heralded a new era, where macrocycles have become an irreplaceable research tool. Therefore, the construction of novel macrocycles has become a hot spot. Tröger's base (TB), as a fragment with both rigidity and chirality, promises tremendous potential in the realm of supramolecular chemistry, and its unique properties continue to motivate researchers to explore its inclusion in macrocycles. However, the construction of a TB-embedded macrocycle is always difficult due to the frequent occurrence of excessive tension. For successful synthesis, part of the function of TB in macrocycle is often overlooked or sacrificed to facilitate the macrocyclization process, leading to serious deficiencies in the utilization of the functions of TB. Thus, the research on TB-embedded macrocycles is still in its preliminary stage. Hence, in this review, TB-embedded macrocycles are highlighted, focusing not only on the linkers of these macrocycles but also on the correlation between the properties of TB and TB-embedded macrocycles. We hope that this review will further guide the synthesis of more excellent macrocycles.
Collapse
Affiliation(s)
- Conghao Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Guangzhou Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Heng Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yumei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Key Lab of Surficial Geochem of MOE, School of Earth Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiancai Lu
- Key Lab of Surficial Geochem of MOE, School of Earth Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Fan H, Gan LH, Wang CR. The formation mechanism of metal cluster fullerenes Sc 3N@C n: force field development and molecular dynamics simulations. Phys Chem Chem Phys 2025; 27:1640-1647. [PMID: 39714348 DOI: 10.1039/d4cp03280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Metal cluster fullerenes are a class of molecular nanomaterials with complex structures and novel properties. An in-depth study of their formation mechanism is a key topic for developing new high-yield synthesis methods and promoting the practical application of such molecular nanomaterials. To elucidate the formation mechanism of Sc3N@Cn, a representative sub-class of metal cluster fullerenes, this study developed a ReaxFF force field parameter set CNSc.ff using a single parameter optimization method and conducted systematic molecular dynamics simulations on a C-N-Sc mixed system using the newly developed force field parameter set. The results show that atomic nitrogen has strong attraction to both C and Sc atoms, and it plays a key role in the formation of Sc3N@Cn; the formation of Sc3N@Cn includes carbon cluster growth, Sc-based cluster growth and their encapsulation; temperature, carbon density, and atomic ratio all affect the relative yield of Sc3N@Cn; and the final products are a mixture of amorphous carbon, fullerenes, metallofullerenes, and metal cluster fullerenes. This study rationalizes the phenomena observed in the synthesis experiments and provides insights for the development of selective and high-yield synthesis methods for metal cluster fullerenes.
Collapse
Affiliation(s)
- Huichen Fan
- School of Chemistry and Chemical Engineering, Southwest University Chongqing, 400715, China.
| | - Li-Hua Gan
- School of Chemistry and Chemical Engineering, Southwest University Chongqing, 400715, China.
| | - Chun-Ru Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Wang DN, Shen W, Li M, Zhang M, Mu J, Cai W. Advancements in endohedral metallofullerenes: novel metal-cage interactions driving new phenomena and emerging applications. Chem Commun (Camb) 2024; 60:14733-14749. [PMID: 39584469 DOI: 10.1039/d4cc04341c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Since the discovery of La@C82, a wide array of endohedral metallofullerenes (EMFs) have been synthesized and documented. Various metals, including lanthanides, transition metals, alkali metals, alkaline earth metals and actinides, have been successfully incorporated into the inert fullerene cavities. The interaction between these encapsulated metal species and the fullerene cage isomers plays a crucial role in determining distinct molecular structures and imparting versatile chemical behaviors to these compounds. In particular, recent advancements in EMFs with medium-sized carbon cages, which are among the most versatile categories of EMFs, have marked a significant breakthrough in fundamental coordination chemistry and opened up a wide range of potential applications. The formation of various abnormal metal clusters, possessing unique chemical bonding character and geometric conformations, has been shown to be influenced by novel electron transfer mechanisms between the metal atoms and the carbon cage. Moreover, these specialized metal-cage interactions have also facilitated the stabilization of giant fullerene families and promoted the exploration of these structures in greater detail, particularly with respect to the unanticipated metallofullertubes. Therefore, this review aims to highlight the new phenomena arising from these novel metal-cage interactions in the fundamental study of pristine EMFs. On this basis, we also discussed innovative applications of EMF-based supramolecular complexes that stem from their unique host-guest association.
Collapse
Affiliation(s)
- Dan-Ning Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wangqiang Shen
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Pan Y, Qi Y, Fei C, Feng Z, Ma Y, Wang C, Han J. Novel Sprayable Antioxidative Dressing Based on Fullerene and Curdlan for Accelerating Chronic Wound Healing. Macromol Rapid Commun 2024; 45:e2400240. [PMID: 38876473 DOI: 10.1002/marc.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Indexed: 06/16/2024]
Abstract
The effective treatment of chronic wounds represents a critical global medical challenge demanding urgent attention. Persistent inflammation, driven by an excess of reactive oxygen radicals, sets in motion a detrimental cycle leading to chronic wounds and impeding the natural healing process. This study develops a sprayable wound dressing by covalently grafting amino fullerene to carboxymethylated curdlan (CMC-C). This novel dressing exhibits excellent biocompatibility, antioxidant, and reactive oxygen species scavenging properties. Furthermore, it demonstrates a targeted affinity for HEK-a cells, efficiently reducing the inflammatory response while promoting cell proliferation and migration in vitro. Moreover, the animal experiment investigations reveal that CMC-C significantly accelerates chronic wounds healing by regulating the inflammatory process, promoting collagen deposition, and improving vascularization. These results demonstrate the potential of the sprayable dressing (CMC-C) in curing the healing of chronic wounds through the modulation of the inflammatory microenvironment. Overall, the sprayable hydrogel dressing based on water-soluble derivative of fullerene and curdlan emerges as a potential approach for clinical applications in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Yiwen Pan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Yuxuan Qi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Chenglong Fei
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Zihang Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingfen Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, 010020, China
| |
Collapse
|
6
|
Gao H, Cai H, Yang G, Zhao J, Li X, Yang S, Yang T. Open-cage metallo-azafullerenes as efficient single-atom catalysts toward oxygen reduction reaction. J Chem Phys 2024; 161:074301. [PMID: 39145553 DOI: 10.1063/5.0221699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Very recently, open-cage metallo-azafullerenes PbC100N4H4 and Pb2C100N4H4 containing one Pb-N4-C moiety have been synthesized via the electron beam. Herein, we utilized density functional theory calculations in combination with ab initio molecular dynamics (AIMD) simulations to study the geometric and electronic structures, bonding properties, thermodynamic stability, and catalytic performance of MC100N4H4 and M2C100N4H4 (M = Ge, Sn, Pb). Metal-nitrogen distances and metal-metal distances increase along with the metal radius while the metal atom is positively charged. Energy decomposition analysis revealed that the bonding interactions between M and the C100N4H4 fragment could be described as the donor-acceptor interaction between M(ns0(n-1)d10np4) and C100N4H4 fragment, in which the orbital interactions terms contribute more than the electrostatic interactions. AIMD simulations demonstrate that those metallo-azafullerenes exhibit thermodynamic stability at room temperature. These metallo-azafullerenes, which could serve as typical carbon-supported single-atom catalysts, possess enhanced catalytic performance toward the oxygen reduction reaction (ORR) compared to the planar catalysts, which is attributed to the curvature of metallo-azafullerenes. GeC100N4H4 and SnC100N4H4 exhibit high catalytic performance in the 4e-ORR pathway to H2O, whereas only PbC100N4H4 is suitable for the 2e-ORR reaction pathway because of the difficulty in obtaining electrons. All M2C100N4H4 favors the 4e-reaction pathway due to the presence of the axial metal atom. Our finding of open-cage metallo-azafullerenes as efficient single-atom catalysts holds profound implications for both fundamental research in catalysis and practical applications in fuel cells and other electrochemical devices.
Collapse
Affiliation(s)
- Haiyang Gao
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Hairui Cai
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Gege Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengchun Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Tao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
7
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
8
|
Fan H, Liu Z, Gan LH, Wang CR. The formation mechanism of Sc-based metallofullerenes: a molecular dynamics simulation study. Phys Chem Chem Phys 2024; 26:5499-5507. [PMID: 38282470 DOI: 10.1039/d3cp05587f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The practical applications of endohedral metallofullerenes (EMFs) are mainly constrained by their low yields. Understanding the formation mechanisms is therefore crucial for developing methods for high-yield and selective synthesis. To address this, a novel force-field parameter set, "CSc.ff", was created using a single-parameter search optimization method, then molecular dynamics simulations of various systems with a carbon-to-scandium atomic ratio of 12.5 were carried out. The simulations were run under a constant atomic number, volume, and energy (NVE) ensemble. The influence of the working gas, helium, as well as temperature gradients on the formation process was examined. Our simulations reveal that the cage growth patterns of Sc-based EMFs (Sc-EMFs) closely resemble those of hollow fullerenes, evolving from free carbon atoms to chains, rings, and, ultimately, to cage-shaped clusters. Importantly, the Sc-EMFs formed in the simulation frequently exhibit structural defects or under-coordinated carbon atoms. Scandium atoms, whether at the periphery or on the surface of these cages, can be incorporated into the cages, forming Sc-EMFs. Helium was found to not only promote the formation of carbon cages but also facilitate the encapsulation of scandium atoms, playing a crucial role in the formation of cluster fullerenes. Moreover, cooling effectively inhibits the uncontrollable growth of the carbon cage and is essential for forming stable, appropriate-sized cages. This study enhances our understanding of the formation of Sc-EMFs and provides valuable insights for developing more efficient synthetic methods.
Collapse
Affiliation(s)
- Huichen Fan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zhenyu Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Li-Hua Gan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Chun-Ru Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Shui Y, Liu D, Zhao P, Zhao X, Ehara M, Lu X, Akasaka T, Yang T. Element effects in endohedral metal-metal-bonding fullerenes M2@C82 (M = Sc, Y, La, Lu). J Chem Phys 2023; 159:244302. [PMID: 38131484 DOI: 10.1063/5.0180309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Endohedral metal-metal-bonding fullerenes have recently emerged, in which encapsulated metals form a metal-metal bond. However, the physical reasons why some metal elements prefer to form metal-metal bonds inside fullerene are still unclear. Herein, we reported first-principles calculations on electronic structures, bonding properties, dynamics, and thermodynamic stabilities of endohedral metallofullerenes M2@C82 (M = Sc, Y, La, Lu). Multiple bonding analysis approaches unambiguously reveal the existence of one two-center two-electron σ covalent metal-metal bond in M2@C82 (M = Sc, Y, Lu); however, the La-La bonding interaction in La2@C82 is weaker and could not be categorized as one metal-metal covalent bond. The energy decomposition analysis on bonding interactions between an encapsulated metal dimer and fullerene cages suggested that there exist two electron-sharing bonds between a metal dimer and fullerene cages. The reasons why La2 prefers to donate electrons to fullerene cages rather than form a standard σ covalent metal-metal bond are mainly attributed to two following facts: La2 has a lower ionization potential, while the hybridization of ns, (n - 1)d, and np atomic orbitals in La2 is higher. Ab initio molecular dynamic simulations reveal that the M-M bond length at room temperature follows the trend of Sc < Lu < Y. The statistical thermodynamics calculations at different temperatures reveal that the experimentally observed endohedral metal-metal-bonding fullerenes M2@C82 have high concentrations in the endohedral fullerene formation temperature range.
Collapse
Affiliation(s)
- Yuan Shui
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dong Liu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Xiang Zhao
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Takeshi Akasaka
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Tao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
10
|
Jin H, Xin J, Xiang W, Jiang Z, Han X, Chen M, Du P, Yao YR, Yang S. Bandgap Engineering of Erbium-Metallofullerenes toward Switchable Photoluminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304121. [PMID: 37805835 DOI: 10.1002/adma.202304121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er-EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono-Er-EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er-cyanide cluster into various C82 cages to form novel Er-monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2 (5), Cs (6), and C2 v (9)), the photoluminescent properties of CYCFs are investigated, and obvious near-infrared (NIR) photoluminescence only is observed for ErCN@C2 (5)-C82 . Combined with a comparative photoluminescence study of three medium-bandgap di-Er-EMFs, including Er2 @Cs (6)-C82 , Er2 O@Cs (6)-C82 , and Er2 C2 @Cs (6)-C82 , this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er-EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di-Er-EMFs differ dramatically. It is found that the location of the Er atom within the same Cs (6)-C82 cage is almost fixed and independent on the endo-unit; thus the previous statement on the key role of metal position in photoluminescence of di-Er-EMFs seems erroneous, and the geometric configuration of the endo-unit, especially the bridging mode of two Er ions, is decisive instead.
Collapse
Affiliation(s)
- Huaimin Jin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenhao Xiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhanxin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyi Han
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang-Rong Yao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Biswas R, Batista Da Rocha C, Bennick RA, Zhang J. Water-Soluble Fullerene Monoderivatives for Biomedical Applications. ChemMedChem 2023; 18:e202300296. [PMID: 37728195 DOI: 10.1002/cmdc.202300296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Monoderivatives of fullerenes functionalized with hydrophilic groups make them water soluble, while preserving the hydrophobic fullerene cage. This class of molecules have intriguing biomedical applications, including drug delivery, photodynamic therapy (PDT), antiviral and antimicrobial activity and reactive oxygen species (ROS)-scavenging abilities. In this Concept we discuss the synthesis and biomedical applications of water-soluble fullerene monoderivatives and their biological behavior based on their structures.
Collapse
Affiliation(s)
- Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Cassiana Batista Da Rocha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ryan A Bennick
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Hasan Alzaimoor EF, Khan E. Metal-Organic Frameworks (MOFs)-Based Sensors for the Detection of Heavy Metals: A Review. Crit Rev Anal Chem 2023; 54:3016-3037. [PMID: 37347646 DOI: 10.1080/10408347.2023.2220800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Metal-organic-frameworks (MOFs) have emerged as promising candidates in different scientific disciplines owing to their intriguing characteristics. Their unique structural properties, including large surface area to volume ratio with multi-functionalities and ultra-high porosity, tunability, uniformity, and easy derivation and fabrication, render them effective materials for sensing applications. The detection of heavy metals in different environmental matrices using various MOF-based sensors is in practice. They include luminescent, electrochemical, electrochemiluminescent, colorimetric, and surface-enhanced Raman scattering, are of great interest. This review elaborates on selected synthetic methods for the fabrication of MOF-based sensors, modification routes for tailoring and enhancing the desired properties, basic characterization techniques, and their limitations in the detection of heavy metals. Also, it emphasizes the use of various types of MOF-based sensors alternatively for the detection of different heavy metals such as Fe(III), Cr(III), Hg(II), Cd(II), and Pb(II) in addition to a normal metal Al(III). A collection of recent references is provided for researchers interested in such applications. Results from the literature have been summarized in tables which give an easy comparison and will help to develop efficient materials.
Collapse
Affiliation(s)
| | - Ezzat Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
13
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
14
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
15
|
Li Y, Biswas R, Kopcha WP, Dubroca T, Abella L, Sun Y, Crichton RA, Rathnam C, Yang L, Yeh Y, Kundu K, Rodríguez‐Fortea A, Poblet JM, Lee K, Hill S, Zhang J. Structurally Defined Water-Soluble Metallofullerene Derivatives towards Biomedical Applications. Angew Chem Int Ed Engl 2023; 62:e202211704. [PMID: 36349405 PMCID: PMC9983306 DOI: 10.1002/anie.202211704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Rohin Biswas
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - William P. Kopcha
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory (NHMFL)Florida State University1800 E. Paul Dirac Dr.TallahasseeFL 32310USA
| | - Laura Abella
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Yue Sun
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Ryan A. Crichton
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Yao‐Wen Yeh
- Department of Physics and Astronomy, RutgersThe State University of New Jersey136 Frelinghuysen RdPiscatawayNJ 08854USA
| | - Krishnendu Kundu
- National High Magnetic Field Laboratory (NHMFL)Florida State University1800 E. Paul Dirac Dr.TallahasseeFL 32310USA
| | - Antonio Rodríguez‐Fortea
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel⋅lí Domingo 143007TarragonaSpain
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| | - Stephen Hill
- National High Magnetic Field Laboratory (NHMFL)Florida State University1800 E. Paul Dirac Dr.TallahasseeFL 32310USA
- Department of PhysicsFlorida State UniversityTallahasseeFL 32306USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, RutgersThe State University of New Jersey123 Bevier RdPiscatawayNJ 08854USA
| |
Collapse
|
16
|
The Future of Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
17
|
He J, Li M, Zhang W, Zhao X. Stabilities, Geometries, Electronic Structures, and Conversion Rules of Carbide Cluster Metallofullerenes. CHEM REC 2022; 22:e202200148. [PMID: 35914902 DOI: 10.1002/tcr.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Indexed: 11/06/2022]
Abstract
Since the discovery of the first carbide cluster metallofullerene (CCMF) Sc2 C2 @C84 in 2001, CCMFs have attracted great concerns with variable structures and fascinating characteristics. To date, there are hundreds of studies on CCMFs. Crystallography studies on CCMFs are carried out by single-crystal X-ray diffraction. Theoretical calculations can also be used to study CCMFs in detail without being limited by low experimental yields. This review analyzes the stability of CCMFs reported previously, and indicates that the C2 unit contributes a lot to their stability. At the same time, the relationship between the structures of inner carbide cluster and cage size is systematically discussed, and the four-electron transfer always occurs. Furthermore, the possible transformation rule between di-EMFs and CCMFs is indicated. Finally, an outlook regarding the future developments and applications of CCMFs is presented.
Collapse
Affiliation(s)
- Jun He
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyang Li
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China.,School of Physics, Xidian University, Xi'an, 710071, China
| | - Wenxin Zhang
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
18
|
Koutsouflakis E, Krylov D, Bachellier N, Sostina D, Dubrovin V, Liu F, Spree L, Velkos G, Schimmel S, Wang Y, Büchner B, Westerström R, Bulbucan C, Kirkpatrick K, Muntwiler M, Dreiser J, Greber T, Avdoshenko SM, Dorn H, Popov AA. Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb 2@C 79N. NANOSCALE 2022; 14:9877-9892. [PMID: 35781298 DOI: 10.1039/d1nr08475e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Realization of stable spin states in surface-supported magnetic molecules is crucial for their applications in molecular spintronics, memory storage or quantum information processing. In this work, we studied the surface magnetism of dimetallo-azafullerene Tb2@C79N, showing a broad magnetic hysteresis in a bulk form. Surprisingly, monolayers of Tb2@C79N exhibited a completely different behavior, with the prevalence of a ground state with antiferromagnetic coupling at low magnetic field and a metamagnetic transition in the magnetic field of 2.5-4 T. Monolayers of Tb2@C79N were deposited onto Cu(111) and Au(111) by evaporation in ultra-high vacuum conditions, and their topography and electronic structure were characterized by scanning tunneling microscopy and spectroscopy (STM/STS). X-ray photoelectron spectroscopy (XPS), in combination with DFT studies, revealed that the nitrogen atom of the azafullerene cage tends to avoid metallic surfaces. Magnetic properties of the (sub)monolayers were then studied by X-ray magnetic circular dichroism (XMCD) at the Tb-M4,5 absorption edge. While in bulk powder samples Tb2@C79N behaves as a single-molecule magnet with ferromagnetically coupled magnetic moments and blocking of magnetization at 28 K, its monolayers exhibited a different ground state with antiferromagnetic coupling of Tb magnetic moments. To understand if this unexpected behavior is caused by a strong hybridization of fullerenes with metallic substrates, XMCD measurements were also performed for Tb2@C79N adsorbed on h-BN|Rh(111) and MgO|Ag(100). The co-existence of two forms of Tb2@C79N was found on these substrates as well, but magnetization curves showed narrow magnetic hysteresis detectable up to 25 K. The non-magnetic state of Tb2@C79N in monolayers is assigned to anionic Tb2@C79N- species with doubly-occupied Tb-Tb bonding orbital and antiferromagnetic coupling of the Tb moments. A charge transfer from the substrate or trapping of secondary electrons are discussed as a plausible origin of these species.
Collapse
Affiliation(s)
- Emmanouil Koutsouflakis
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Denis Krylov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Nicolas Bachellier
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Daria Sostina
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Vasilii Dubrovin
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Sebastian Schimmel
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Yaofeng Wang
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Rasmus Westerström
- The Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Claudiu Bulbucan
- The Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Kyle Kirkpatrick
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Matthias Muntwiler
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Thomas Greber
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Physik-Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Stas M Avdoshenko
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Harry Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany.
| |
Collapse
|
19
|
Grebowski J, Litwinienko G. Metallofullerenols in biomedical applications. Eur J Med Chem 2022; 238:114481. [PMID: 35665690 DOI: 10.1016/j.ejmech.2022.114481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Metallofullerenols (MFs) are functionalized endohedral fullerenes connecting at least three levels of organization of matter: atomic, molecular, and supramolecular, resulting in their unique activity at the nanoscale. Biomedical applications of MFs started from gadolinium-containing contrasting agents, but today their potential medical applications go far beyond diagnostics and magnetic resonance imaging. In many cases, preclinical studies have shown a great therapeutic value of MFs, and here we provide an overview of interactions of MFs with high-energy radiation and with reactive oxygen species generated during radiation as a ground for potential applications in modern therapy of cancer patients. We also present the current knowledge on interactions of MFs with proteins and with other components of cells and tissues. Due to their antioxidant properties, as well as their ability to regulate the expression of genes involved in apoptosis, angiogenesis, and stimulation of the immune response, MFs can contribute to inhibition of tumor growth and protection of normal cells. MFs with enclosed gadolinium act as inhibitors of tumor growth in targeted therapy along with imaging techniques, but we hope that the data gathered in this review will help to accelerate further progress in the implementation of MFs, also the ones containing rare earth metals other than gadolinium, in a broad range of bioapplications covering not only diagnostics and bioimaging but also radiation therapy and cancer treatment by not-cytotoxic agents.
Collapse
Affiliation(s)
- Jacek Grebowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland; The Military Medical Training Center, 6-Sierpnia 92, 90-646, Lodz, Poland.
| | | |
Collapse
|
20
|
The Future of Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_24-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
21
|
Nie M, Liang J, Zhao C, Lu Y, Zhang J, Li W, Wang C, Wang T. Single-Molecule Magnet with Thermally Activated Delayed Fluorescence Based on a Metallofullerene Integrated by Dysprosium and Yttrium Ions. ACS NANO 2021; 15:19080-19088. [PMID: 34730326 DOI: 10.1021/acsnano.1c05105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is vital to construct luminescent single-molecule magnets (SMMs) and explore their applications in quantum computing technique and magneto-luminescence devices. In this work, we report a luminescent single-molecule magnet with thermally activated delayed fluorescence (TADF) based on metallofullerene DyY2N@C80. DyY2N@C80 was constructed by integrating dysprosium and yttrium ions into a fullerene cage. Magnetic results suggest that DyY2N@C80 exhibits magnetic hysteresis loops below 8 K originating from the Dy3+ ion. Moreover, DyY2N@C80 exhibits TADF originating from the Y3+-coordinated carbon cage, whose luminescence peak positions and peak intensities can be obviously influenced by Dy3+. Furthermore, a supramolecular complex of DyY2N@C80 and [12]Cycloparaphenylene ([12]CPP) was then prepared to construct a single-molecule magnet with multiwavelength luminescence. The effects of host-guest interaction on photoluminescence properties of DyY2N@C80 were disclosed. Theoretical calculations were also employed to illustrate the structures of DyY2N@C80 and DyY2N@C80⊂[12]CPP.
Collapse
Affiliation(s)
- Mingzhe Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Liang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Pykhova AD, Semivrazhskaya OO, Samoylova NA, Popov AA, Ioffe IN, Goryunkov AA. Regioselective CF 2 functionalization of Sc 3N@ D3h(5)-C 78. Dalton Trans 2021; 51:1182-1190. [PMID: 34951436 DOI: 10.1039/d1dt04031f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first synthesis and computational study of Sc3N@C78(CF2) - an analog of the previously reported Sc3N@C80(CF2) with a less common carbon cage whose chemical properties presently remain far less studied. Sc3N@C78 appears to be considerably more reactive toward CF2 addition than Sc3N@C80 and somewhat more reactive than C60. Even though the less symmetric D3h(5)-C78 carbon cage offers far broader opportunities for isomerism than Ih-C80, CF2 addition to Sc3N@C78 proceeds regioselectively, similarly to other common fullerene reactions. A DFT survey of the thermodynamic and kinetic aspects of CF2 addition demonstrates that the regioselectivity is controlled kinetically.
Collapse
Affiliation(s)
- Anastasia D Pykhova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia.
| | - Olesya O Semivrazhskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia.
| | - Nataliya A Samoylova
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany.
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany.
| | - Ilya N Ioffe
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia.
| | - Alexey A Goryunkov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia.
| |
Collapse
|
23
|
Li Y, Emge TJ, Moreno-Vicente A, Kopcha WP, Sun Y, Mansoor IF, Lipke MC, Hall GS, Poblet JM, Rodríguez-Fortea A, Zhang J. Unexpected Formation of Metallofulleroids from Multicomponent Reactions, with Crystallographic and Computational Studies of the Cluster Motion. Angew Chem Int Ed Engl 2021; 60:25269-25273. [PMID: 34559455 DOI: 10.1002/anie.202110881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Indexed: 11/09/2022]
Abstract
New multicomponent reactions involving an isocyanide, terminal or internal alkynes, and endohedral metallofullerene (EMF) Lu3 N@C80 yield metallofulleroids which are characterized by mass-spectrometry, HPLC, and multiple 1D and 2D NMR techniques. Single crystal studies revealed one ketenimine metallofulleroid has ordered Lu3 N cluster which is unusual for EMF monoadducts. Computational analysis, based on crystallographic data, confirm that the endohedral cluster motion is controlled by the position of the exohedral organic appendants. Our findings provide a new functionalization reaction for EMFs, and a potential facile approach to freeze the endohedral cluster motion at relatively high temperatures.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Antonio Moreno-Vicente
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Gene S Hall
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| |
Collapse
|
24
|
Li Y, Emge TJ, Moreno‐Vicente A, Kopcha WP, Sun Y, Mansoor IF, Lipke MC, Hall GS, Poblet JM, Rodríguez‐Fortea A, Zhang J. Unexpected Formation of Metallofulleroids from Multicomponent Reactions, with Crystallographic and Computational Studies of the Cluster Motion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanbang Li
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Antonio Moreno‐Vicente
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - William P. Kopcha
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Yue Sun
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Iram F. Mansoor
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Mark C. Lipke
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Gene S. Hall
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - Antonio Rodríguez‐Fortea
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| |
Collapse
|
25
|
Li W, Wang C, Wang T. Molecular structures and magnetic properties of endohedral metallofullerenes. Chem Commun (Camb) 2021; 57:10317-10326. [PMID: 34542549 DOI: 10.1039/d1cc04218a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endohedral metallofullerenes have fascinating core-shell structures, with metal atoms or metal clusters encaged in fullerene cages, and they display various chemical, optical and magnetic properties derived from different types of fullerene cages and metal moieties. Fullerene cages can act as carriers to stabilize unusual cluster moieties. Many bizarre species that are hard to produce via synthetic methods survive well under the protection of a fullerene cage, making metallofullerenes ideal platforms for generating new clusters and bonds. Fullerene cages can also be carriers to hold active unpaired electrons. Some metallofullerenes possess electron spin and show intriguing magnetic properties, making them applicable for use in quantum computing, high density information storage and magnetoreception systems. The exploration of new metallofullerenes is still ongoing, while function-oriented studies are also promoted for the future application of metallofullerenes. Herein, we highlight the recent progress in the synthesis, electron spin characteristics and magnetic properties of metallofullerenes. Discussions and an outlook on the future development of metallofullerenes are also stated.
Collapse
Affiliation(s)
- Wang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| |
Collapse
|
26
|
Ye L, Kollie L, Liu X, Guo W, Ying X, Zhu J, Yang S, Yu M. Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles. Molecules 2021; 26:molecules26113252. [PMID: 34071369 PMCID: PMC8198614 DOI: 10.3390/molecules26113252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The development of novel nanoparticles as a new generation therapeutic drug platform is an active field of chemistry and cancer research. In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity, which makes them have broad application prospects in the field of cancer therapy. Therefore, understanding the anti-tumor mechanism of fullerene nanoparticles is of great significance for the design and development of anti-tumor drugs with low toxicity and high targeting. This review has focused on various anti-tumor mechanisms of fullerene derivatives and discusses their toxicity and their distribution in organisms. Finally, the review points out some urgent problems that need solution before fullerene derivatives as a new generation of anti-tumor nano-drug platform enter clinical research.
Collapse
Affiliation(s)
- Lianjie Ye
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
| | - Larwubah Kollie
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xing Liu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Wei Guo
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xiangxian Ying
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jun Zhu
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Shengjie Yang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Meilan Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Correspondence:
| |
Collapse
|
27
|
Guan R, Chen M, Xin J, Xie XM, Jin F, Zhang Q, Xie SY, Yang S. Capturing the Missing Carbon Cage Isomer of C 84 via Mutual Stabilization of a Triangular Monometallic Cyanide Cluster. J Am Chem Soc 2021; 143:8078-8085. [PMID: 34010566 DOI: 10.1021/jacs.1c02428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monometallic cyanide clusterfullerenes (CYCFs) represent a unique branch of endohedral clusterfullerenes with merely one metal atom encapsulated, offering a model system for elucidating structure-property correlation, while up to now only C82 and C76 cages have been isolated for the pristine CYCFs. C84 is one of the most abundant fullerenes and has 24 isomers obeying the isolated pentagon rule (IPR), among which 14 isomers have been already isolated, whereas the C2v(17)-C84 isomer has lower relative energy than several isolated isomers but never been found for empty and endohedral fullerenes. Herein, four novel C84-based pristine CYCFs with variable encapsulated metals and isomeric cages, including MCN@C2(13)-C84 (M = Y, Dy, Tb) and DyCN@C2v(17)-C84, have been synthesized and isolated, fulfilling the first identification of the missing C2v(17)-C84 isomer, which can be interconverted from the C2(13)-C84 isomer through two steps of Stone-Wales transformation. The molecular structures of these four C84-based CYCFs are determined unambiguously by single-crystal X-ray diffraction. Surprisingly, although the ionic radii of Y3+, Dy3+, and Tb3+ differ slightly by only 0.01 Å, such a subtle difference leads to an obvious change in the metal-cage interactions, as inferred from the distance between the metal atom and the nearest hexagon center of the C2(13)-C84 cage. On the other hand, upon altering the isomeric cage from DyCN@C2(13)-C84 to DyCN@C2v(17)-C84, the Dy-cage distance changes as well, indicating the interplay between the encapsulated DyCN cluster and the outer cage. Therefore, we demonstrate that the metal-cage interactions within CYCFs can be steered via both internal and external routes.
Collapse
Affiliation(s)
- Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinpeng Xin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Ming Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qianyan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Hu Y, Yao YR, Liu X, Yu A, Xie X, Abella L, Rodríguez-Fortea A, Poblet JM, Akasaka T, Peng P, Zhang Q, Xie SY, Li FF, Lu X. Unexpected formation of 1,2- and 1,4-bismethoxyl Sc 3N@ I h-C 80 derivatives via regioselective anion addition: an unambiguous structural identification and mechanism study. Chem Sci 2021; 12:8123-8130. [PMID: 34194702 PMCID: PMC8208303 DOI: 10.1039/d1sc01178b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
An attempt to achieve heterocyclic cycloadducts of Sc3N@I h-C80 via reaction with Ph2C[double bond, length as m-dash]O, PhC[triple bond, length as m-dash]CPh or PhC[triple bond, length as m-dash]N in the presence of tetrabutylammonium hydroxide (TBAOH) stored in CH3OH led to the formation of the unexpected bismethoxyl adducts of Sc3N@I h-C80 (1 and 2). Further studies reveal that TBAOH in CH3OH can boost the CH3O- addition efficiently, regardless of the presence of other reagents. Single-crystal X-ray diffraction results firmly assign the molecular structures of 1 and 2 as respective 1,4- and 1,2-bismethoxyl adducts, and reveal unusual relationships between the internal Sc3N cluster and the addition modes, in addition to the unusual packing mode in view of the orientation of the methoxyl groups. Electrochemical results demonstrate smaller electrochemical gaps for 1 and 2, relative to that of Sc3N@I h-C80, confirming their better electroactive properties. Finally, a plausible reaction mechanism involving anion addition and a radical reaction was proposed, presenting new insights into the highly selective reactions between the methoxyl anion and metallofullerenes. 1 and 2 represent the first examples of methoxyl derivatives of metallofullerenes. This work not only presents a novel and facile strategy for the controllable synthesis of alkoxylated metallofullerene derivatives, but also provides new non-cycloadducts for the potential applications of EMFs.
Collapse
Affiliation(s)
- Yajing Hu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yang-Rong Yao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xuechen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Ao Yu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Xiaoming Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Laura Abella
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Takeshi Akasaka
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Ping Peng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Fang-Fang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Xing Lu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| |
Collapse
|
29
|
Chen C, Spree L, Koutsouflakis E, Krylov DS, Liu F, Brandenburg A, Velkos G, Schimmel S, Avdoshenko SM, Fedorov A, Weschke E, Choueikani F, Ohresser P, Dreiser J, Büchner B, Popov AA. Magnetic Hysteresis at 10 K in Single Molecule Magnet Self-Assembled on Gold. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2000777. [PMID: 33717832 PMCID: PMC7927621 DOI: 10.1002/advs.202000777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low-dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self-assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene-SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X-ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self-assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self-assembly of fullerene-SMM derivatives offers a facile solution-based procedure for the preparation of functional magnetic sub-monolayers with excellent SMM performance.
Collapse
Affiliation(s)
- Chia‐Hsiang Chen
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
- Department of Medicinal and Applied ChemistryKaohsiung Medical UniversityKaohsiung807Taiwan
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Emmanouil Koutsouflakis
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Denis S. Krylov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Ariane Brandenburg
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Sebastian Schimmel
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Stanislav M. Avdoshenko
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Alexander Fedorov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
- Helmholtz‐Zentrum Berlin für Materialien und EnergieWilhelm‐Conrad‐Röntgen‐Campus BESSY IIAlbert‐Einstein‐Strasse 15BerlinD‐12489Germany
| | - Eugen Weschke
- Helmholtz‐Zentrum Berlin für Materialien und EnergieWilhelm‐Conrad‐Röntgen‐Campus BESSY IIAlbert‐Einstein‐Strasse 15BerlinD‐12489Germany
| | - Fadi Choueikani
- Synchrotron SOLEILL'Orme des MerisiersSaint‐Aubin, BP 48Gif‐sur‐Yvette91192France
| | - Philippe Ohresser
- Synchrotron SOLEILL'Orme des MerisiersSaint‐Aubin, BP 48Gif‐sur‐Yvette91192France
| | - Jan Dreiser
- Swiss Light SourcePaul Scherrer InstituteVilligen PSICH‐5232Switzerland
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 20Dresden01069Germany
| |
Collapse
|
30
|
Hao Y, Wang Y, Spree L, Liu F. Rotation of fullerene molecules in the crystal lattice of fullerene/porphyrin: C60 and Sc3N@C80. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01101k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature driven rotation of the encapsulated Sc3N cluster in a C80 fullerene cage was unraveled by variable temperature X-ray diffraction, which is significantly different from its analogues (Ho2LuN/Lu3N).
Collapse
Affiliation(s)
- Yajuan Hao
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)
- 01069 Dresden
- Germany
- School of Electrical and Mechanical Engineering
- Pingdingshan University
| | - Yaofeng Wang
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)
- 01069 Dresden
- Germany
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)
- 01069 Dresden
- Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)
- 01069 Dresden
- Germany
| |
Collapse
|
31
|
Li M, Zhao Y, Yuan K, Han Y, Zhang J, Wu Y, Ehara M, Nagase S, Zhao X. Lithium–bromine exchange reaction on C 60: first theoretical proposal of a stable singlet fullerene carbene without the heteroatom. Org Chem Front 2021. [DOI: 10.1039/d0qo01589j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A stable singlet fullerene carbene without heteroatom is firstly proposed, and two indexes are firstly suggested to estimate the occurrence of carbene insertion or addition. The interaction between LiBr and carbon atom in LiBr-compounds is explored.
Collapse
Affiliation(s)
- Mengyang Li
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yaoxiao Zhao
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Kun Yuan
- College of Chemical Engineering and Technology
- Tianshui Normal University
- Tianshui
- China
| | - Yanbo Han
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Zhang
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yong Wu
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | | | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|
32
|
Hao Y, Wang Y, Dubrovin V, Avdoshenko SM, Popov AA, Liu F. Caught in Phase Transition: Snapshot of the Metallofullerene Sc3N@C70 Rotation in the Crystal. J Am Chem Soc 2020; 143:612-616. [DOI: 10.1021/jacs.0c10758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yajuan Hao
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
- School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Yaofeng Wang
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Vasilii Dubrovin
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stanislav M. Avdoshenko
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| |
Collapse
|
33
|
Zaripov RB, Kandrashkin YE, Salikhov KM, Büchner B, Liu F, Rosenkranz M, Popov AA, Kataev V. Unusually large hyperfine structure of the electron spin levels in an endohedral dimetallofullerene and its spin coherent properties. NANOSCALE 2020; 12:20513-20521. [PMID: 33026391 DOI: 10.1039/d0nr06114j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the synthesis, ESR spectroscopic and spin coherent properties of the dimetallofullerene Sc2@C80(CH2Ph). The single-electron metal-metal bond of the Sc2 dimer inside the fullerene's cage is stabilized with the electron spin density being fully localized at the metal bond. This results in an extraordinary strong hyperfine interaction of the electron spin with the 45Sc nuclear spins with a coupling constant a = 18.2 mT (∼510 MHz) and yields a fully resolved hyperfine-split ESR spectrum comprising 64 lines. The splitting is present even at low temperatures where the molecular dynamics are completely frozen. The large extent and the robustness of the hyperfine-split spectra enable us to identify and control the well-defined transitions between specific electron-nuclear quantum states. This made it possible to demonstrate in our pulse ESR study the remarkable spin coherent dynamics of Sc2@C80(CH2Ph), such as the generation of arbitrary superpositions of the spin states in a nutation experiment and the spin dephasing times above 10 μs at temperatures T < 80 K reaching the value of 17 μs at T ≤ 20 K. These observations suggest Sc2@C80(CH2Ph) as an interesting qubit candidate and motivate further synthetic efforts to obtain fullerene-based systems with superior spin properties.
Collapse
Affiliation(s)
- Ruslan B Zaripov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Yuri E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Kev M Salikhov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Bernd Büchner
- Leibniz IFW Dresden, D-01069, Dresden, Germany and Institute for Solid State and Materials Physics, TU Dresden, D-01062 Dresden, Germany
| | - Fupin Liu
- Leibniz IFW Dresden, D-01069, Dresden, Germany
| | | | | | | |
Collapse
|
34
|
Liu Y, Zhu D, Zhu X, Cai G, Wu J, Chen M, Du P, Chen Y, Liu W, Yang S. Enhancing the photodynamic therapy efficacy of black phosphorus nanosheets by covalently grafting fullerene C 60. Chem Sci 2020; 11:11435-11442. [PMID: 34094386 PMCID: PMC8162772 DOI: 10.1039/d0sc03349a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Few-layer black phosphorus (BP) nanosheets show potential application in biomedicine such as photodynamic therapy (PDT), and are therefore commonly used in anticancer therapy and nanomedicine due to being relatively less invasive. However, they suffer from low ambient stability and poor therapeutic efficacy. Herein, C60 was covalently grafted onto the edges of BP nanosheets, and the resultant BP-C60 hybrid was applied as a novel endocytosing photosensitizer, resulting in not only significantly enhanced PDT efficacy relative to that of the pristine BP nanosheets, but also drastically improved stability in a physiological environment, as confirmed by both in vitro and in vivo studies. Such improved stability was due to shielding effect of the stable hydrophobic C60 molecules. The enhanced PDT efficacy is interpreted from the photoinduced electron transfer from BP to C60, leading to the promoted generation of ˙OH radicals, acting as a reactive oxygen species (ROS) that is effective in killing tumor cells. Furthermore, the BP-C60 hybrid exhibited low systemic toxicity in the major organs of mice. The BP-C60 hybrid represents the first BP-fullerene hybrid nanomaterial fulfilling promoted ROS generation and consequently enhanced PDT efficacy.
Collapse
Affiliation(s)
- Yajuan Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Daoming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Xianjun Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Gaoke Cai
- Department of Clinical Oncology, Renmin Hospital of Wuhan University Wuhan 430072 China
| | - Jianhua Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University Wuhan 430072 China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
35
|
Liu S, Chen D, Li X, Guan M, Zhou Y, Li L, Jia W, Zhou C, Shu C, Wang C, Bai C. Fullerene nanoparticles: a promising candidate for the alleviation of silicosis-associated pulmonary inflammation. NANOSCALE 2020; 12:17470-17479. [PMID: 32808001 DOI: 10.1039/d0nr04401f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic exposure to crystalline silica causes the development of silicosis, which is one of the most important occupational diseases worldwide. In the early stage of silicosis, inhaled silica crystals initiate oxidative stress, a cycle of persistent inflammation and lung injury. And it is crucial to prevent the deteriorative progression in the onset of the disease. Herein, we present a promising candidate for the treatment of crystalline silica-induced pulmonary inflammation, using a silicosis mouse model caused by intratracheal instillation based on local administration of β-alanine and hydroxyl functionalized C70 fullerene nanoparticles (FNs). The results demonstrate that FNs could significantly alleviate inflammatory cells infiltration, lower the secretion of pro-inflammatory cytokines, and reduce the destruction of lung architecture stimulated by crystalline silica. Further investigations reveal that FNs could effectively inhibit the activation of NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome, and thus prevent the secretion of mature IL-1β and neutrophil influx, deriving from the superior ROS scavenging capability. Importantly, FNs could not cause any obvious toxicity after pulmonary administration.
Collapse
Affiliation(s)
- Shuai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daiqin Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mirong Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Yamada M, Liu MTH, Nagase S, Akasaka T. New Horizons in Chemical Functionalization of Endohedral Metallofullerenes. Molecules 2020; 25:E3626. [PMID: 32784953 PMCID: PMC7463479 DOI: 10.3390/molecules25163626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/04/2022] Open
Abstract
This overview explains some new aspects of chemical functionalization of endohedral metallofullerenes (EMFs) that have been unveiled in recent years. After differences in chemical reactivity between EMFs and the corresponding empty fullerenes are discussed, cage-opening reactions of EMFs are examined. Then, the selective bisfunctionalization of EMFs is explained. Finally, single-bonding derivatization of EMFs is addressed. The diversity and applicability of the chemical functionalization of endohedral metallofullerenes are presented to readers worldwide.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Michael T. H. Liu
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A4P3, Canada;
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan;
| | - Takeshi Akasaka
- Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
- TARA Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Foundation for Advancement of International Science, Tsukuba, Ibaraki 305-0821, Japan
- State Key Laboratory of Materials Processing and Dye and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Siposova K, Petrenko VI, Ivankov OI, Musatov A, Bulavin LA, Avdeev MV, Kyzyma OA. Fullerenes as an Effective Amyloid Fibrils Disaggregating Nanomaterial. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32410-32419. [PMID: 32598133 DOI: 10.1021/acsami.0c07964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, determining the disassembly mechanism of amyloids under nanomaterials action is a crucial issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. In this study, the antiamyloid disassembly activity of fullerenes C60 and C70 dispersed in 1-methyl-2-pyrrolidinone (NMP) toward amyloid fibrils preformed from lysozyme and insulin was investigated using a combination of different experimental techniques. Thioflavin T fluorescence assay and atomic force microscopy were applied for monitoring of disaggregation activity of fullerenes. It was demonstrated that both types of fullerene-based complexes are very effective in disassembling preformed fibrils, and characterized by the low apparent half-maximal disaggregation concentration (DC50) in the range of ∼22-30 μg mL-1. Small-angle neutron scattering was employed to monitor the different stages of the disassembly process with respect to the size and morphology of the aggregates. Based on the obtained results, a possible disassembly mechanism for amyloid fibrils interacting with fullerene/NMP complexes was proposed. The study is a principal step in understanding of the fullerenes destruction mechanism of the protein amyloids, as well as providing valuable information on how macromolecules can be engineered to disassemble unwanted amyloid aggregates by different mechanisms.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
| | - Viktor I Petrenko
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Oleksandr I Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Leonid A Bulavin
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, 03127 Kyiv, Ukraine
| | - Mikhail V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- State University "Dubna", Universitetskaya 19, 141982 Dubna, Moscow Reg. Russia
| | - Olena A Kyzyma
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, 03127 Kyiv, Ukraine
| |
Collapse
|
38
|
Zhao C, Tan K, Nie M, Lu Y, Zhang J, Wang C, Lu X, Wang T. Scandium Tetrahedron Supported by H Anion and CN Pentaanion inside Fullerene C 80. Inorg Chem 2020; 59:8284-8290. [PMID: 32437143 DOI: 10.1021/acs.inorgchem.0c00681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endohedral metallofullerenes have greatly expanded the range of the fullerene family due to their nesting structure and unusual encapsulated clusters protected by a fullerene cage. Herein, we report a metallofullerene Sc4CNH@Ih-C80, which has a scandium tetrahedron supported by H and CN anions inside fullerene C80. Sc4CNH@Ih-C80 has a rare multilayer nesting structure, and the internal Sc4CNH is the most complex endohedral cluster disclosed to date. Sc4CNH@Ih-C80 has so many bonding types (metal-carbide, metal-nitride, and metal-hydride), which weave a polyhedron of Sc4CNH clusters. This work shows that the endohedral metallofullerenes have the potential to build inorganic nesting polyhedra that have distinctive architectures and unique electronic properties. Sc4CNH@Ih-C80 was synthesized by means of the arc-discharge method using scandium and graphite under the mixed atmosphere of hydrogen, nitrogen, and helium. It is the first time to disclose an unprecedented metal-hydride bond in a fullerene cage. This result shows that the endohedral fullerenes bearing hydrogen species can be synthesized by the arc-discharge technique under an atmosphere of hydrogen. This work demonstrates that a fullerene cage can be an ample carrier to encapsulate unusual cluster moieties.
Collapse
Affiliation(s)
- Chong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Kai Tan
- Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingzhe Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuxi Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Lu
- Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
39
|
Li L, Zhen M, Wang H, Sun Z, Jia W, Zhao Z, Zhou C, Liu S, Wang C, Bai C. Functional Gadofullerene Nanoparticles Trigger Robust Cancer Immunotherapy Based on Rebuilding an Immunosuppressive Tumor Microenvironment. NANO LETTERS 2020; 20:4487-4496. [PMID: 32407113 DOI: 10.1021/acs.nanolett.0c01287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer immunotherapy as a novel cancer therapeutic strategy has shown enormous promise. However, the immunosuppressive tumor microenvironment (ITM) is a primary obstacle. Tumor-associated macrophages (TAMs) as a major component of immune cells in a tumor microenvironment are generally polarized to the M2 phenotype that not only accelerates tumor growth but also influences the infiltration of lymphocytes and leads to immunosuppression. Thus, rebuilding ITM by re-educating TAMs and increasing infiltration of lymphocytes is a promising strategy. Herein, gadofullerene (GF-Ala) nanoparticles are demonstrated to reprogram TAMs to M1-like and increase the infiltration of cytotoxic T lymphocytes (CTLs), achieving effective inhibition of tumor growth. Notably, the modulation of ITM by GF-Ala promotes the anticancer efficacy of anti-PD-L1 immune checkpoint inhibitor, achieving superior synergistic treatment. Additionally, GF-Ala nanoparticles can be mostly excreted from the body and cause no obvious toxicity. Together, this study provides an effective immunomodulation strategy using gadofullerene nanoparticles by rebuilding ITM and synergizing immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Liu Z, Huang H, Wang YX, Dong BW, Sun BY, Jiang SD, Gao S. Amination of the Gd@C 82 endohedral fullerene: tunable substitution effect on quantum coherence behaviors. Chem Sci 2020; 11:10737-10743. [PMID: 34094326 PMCID: PMC8162292 DOI: 10.1039/d0sc02182b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The core-shell structure of endohedral fullerene-based anisotropic magnetic molecules of high spin with long coherence time could help scale up quantum systems. In this research, by amination of Gd@C82 with morpholine, three derivatives are functionalized with 5, 7 and 9 morpholine groups providing an interesting model to investigate the relationship between the quantum coherence and the spin environment. The original radical located on the carbon cage is successfully quenched, affording a quantum phase memory times (T M) over 5 μs at 5 K. By increasing the number of substitution groups, spin-lattice relaxation times (T 1) also show significant enhancement due to the interaction variation between the molecules and the environments. We found that the T M of the three molecules show no obvious difference below 10 K, while they are limited by T 1 at higher temperatures. In this work, the variable functional groups are able to tune both T 1 and T M, offering the possibility for application of high-spin magnetic molecules in the field of quantum information processing.
Collapse
Affiliation(s)
- Zheng Liu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Huan Huang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Ye-Xin Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bo-Wei Dong
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bao-Yun Sun
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Shang-Da Jiang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China .,School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China .,School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China.,Beijing Academy of Quantum Information Sciences West Bld. #3, No. 10 Xibeiwang East Rd., Haidian District Beijing 100193 P. R. China
| |
Collapse
|
41
|
Velkos G, Yang W, Yao YR, Sudarkova SM, Liu X, Büchner B, Avdoshenko SM, Chen N, Popov AA. Shape-adaptive single-molecule magnetism and hysteresis up to 14 K in oxide clusterfullerenes Dy 2O@C 72 and Dy 2O@C 74 with fused pentagon pairs and flexible Dy-(μ 2-O)-Dy angle. Chem Sci 2020; 11:4766-4772. [PMID: 33437409 PMCID: PMC7116574 DOI: 10.1039/d0sc00624f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/19/2020] [Indexed: 01/05/2023] Open
Abstract
Dysprosium oxide clusterfullerenes Dy2O@Cs(10528)-C72 and Dy2O@C2(13333)-C74 are synthesized and characterized by single-crystal X-ray diffraction. Carbon cages of both molecules feature two adjacent pentagon pairs. These pentalene units determine positions of endohedral Dy ions hence the shape of the Dy2O cluster, which is bent in Dy2O@C72 but linear in Dy2O@C74. Both compounds show slow relaxation of magnetization and magnetic hysteresis. Nearly complete cancelation of ferromagnetic dipolar and antiferromagnetic exchange Dy…Dy interactions leads to unusual magnetic properties. Dy2O@C74 exhibits zero-field quantum tunneling of magnetization and magnetic hysteresis up to 14 K, the highest temperature among Dy-clusterfullerenes.
Collapse
Affiliation(s)
- Georgios Velkos
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| | - Wei Yang
- College of Chemistry
, Chemical Engineering and Materials Science
, Soochow University
,
Suzhou
, Jiangsu 215123
, P.R. China
.
| | - Yang-Rong Yao
- Department of Chemistry
, University of Texas at El Paso
, 500 W University Avenue
,
El Paso
, Texas 79968
, USA
| | - Svetlana M. Sudarkova
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
- Chemistry Department
, Moscow State University
,
119991 Moscow
, Russia
| | - XinYe Liu
- College of Chemistry
, Chemical Engineering and Materials Science
, Soochow University
,
Suzhou
, Jiangsu 215123
, P.R. China
.
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| | - Stanislav M. Avdoshenko
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| | - Ning Chen
- College of Chemistry
, Chemical Engineering and Materials Science
, Soochow University
,
Suzhou
, Jiangsu 215123
, P.R. China
.
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research Helmholtzstraße 20
,
01069 Dresden
, Germany
.
;
| |
Collapse
|
42
|
Li X, Wang C. The potential biomedical platforms based on the functionalized Gd@C
82
nanomaterials. VIEW 2020. [DOI: 10.1002/viw2.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
43
|
Spree L, Schlesier C, Kostanyan A, Westerström R, Greber T, Büchner B, Avdoshenko SM, Popov AA. Single-Molecule Magnets DyM 2 N@C 80 and Dy 2 MN@C 80 (M=Sc, Lu): The Impact of Diamagnetic Metals on Dy 3+ Magnetic Anisotropy, Dy⋅⋅⋅Dy Coupling, and Mixing of Molecular and Lattice Vibrations. Chemistry 2020; 26:2436-2449. [PMID: 31774196 PMCID: PMC7065109 DOI: 10.1002/chem.201904879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 01/11/2023]
Abstract
The substitution of scandium in fullerene single-molecule magnets (SMMs) DySc2 N@C80 and Dy2 ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2 N@C80 , which shows a higher blocking temperature of magnetization (TB =9.5 K), longer relaxation times, and broader hysteresis than DySc2 N@C80 (TB =6.9 K). At the same time, Dy2 LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2 ScN@C80 (TB =8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2 MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2 LuN@C80 and Dy2 ScN@C80 are of similar strength, the exchange interactions in Dy2 LuN@C80 are close to zero. Analysis of the low-frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k-space. This mixing simplifies the spin-lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice.
Collapse
Affiliation(s)
- Lukas Spree
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)01069DresdenGermany
| | - Christin Schlesier
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)01069DresdenGermany
| | - Aram Kostanyan
- Physik-Institut der Universität ZürichWinterthurerstr. 1908057ZürichSwitzerland
| | - Rasmus Westerström
- Physik-Institut der Universität ZürichWinterthurerstr. 1908057ZürichSwitzerland
- The Division of Synchrotron Radiation ResearchLund University22100LundSweden
| | - Thomas Greber
- Physik-Institut der Universität ZürichWinterthurerstr. 1908057ZürichSwitzerland
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)01069DresdenGermany
| | | | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden)01069DresdenGermany
| |
Collapse
|
44
|
Li M, Zhao Y, Han Y, Yuan K, Zhang K, Chen Y, Ehara M, Nagase S, Zhao X. Covalent interactions depend on the distances between metals and fullerenes for thermodynamically stable M@C78 (M = La, Ce, and Sm). Inorg Chem Front 2020. [DOI: 10.1039/d0qi00428f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermodynamic selectivity occurs between fullerenes and metals in M@C78 (M = La, Ce, Sm), including non-IPR C1(22 595)-C78; the different number of electrons transferred from metals to C78 leads to the first EMF with diradical features.
Collapse
Affiliation(s)
- Mengyang Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yaoxiao Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yanbo Han
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Kun Yuan
- College of Chemical Engineering and Technology
- Tianshui Normal University
- Tianshui
- China
| | - Kaini Zhang
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yingqi Chen
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | | | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
45
|
Yang N, Zhang H. Nanocarbon Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905367. [PMID: 31773902 DOI: 10.1002/smll.201905367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Li J, Chen L, Yan L, Gu Z, Chen Z, Zhang A, Zhao F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C 82(OH) 22. Molecules 2019; 24:molecules24132387. [PMID: 31252662 PMCID: PMC6650816 DOI: 10.3390/molecules24132387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer remains a major threat to human health worldwide. Cytotoxicity has imposed restrictions on the conventional cytotoxic drug-based chemotherapy. The rapidly-developing nanomedicine has shown great promise in revolutionizing chemotherapy with improved efficiency and reduced toxicity. Gd@C82(OH)22, a novel endohedral metallofullerenol, was first reported by our research group to suppress tumor growth and metastasis efficiently without obvious toxicity. Gd@C82(OH)22 imprisons tumors by facilitating the formation of surrounding fibrous layers which is different from chemotherapeutics that poison tumor cells. In this review, the authors first reported the antineoplastic activity of metallofullerenol Gd@C82(OH)22 followed by further discussions on its new anti-cancer molecular mechanism—tumor encaging. On this basis, the unparalleled advantages of nanomedicine in the future drug design are discussed. The unique interaction modes of Gd@C82(OH)22 with specific targeted biomolecules may shed light on a new avenue for drug design. Depending on the surface characteristics of target biomolecules, nanomedicine, just like a transformable and dynamic key, can self-assemble into suitable shapes to match several locks for the thermodynamic stability, suggesting the target-tailoring ability of nanomedicine.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Linlin Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhaofang Chen
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|