1
|
Meng S, Wu N, Fang J, Yu Y, Tang X, Wang Y, Deng X, Qi C, Kong T, Ding T, Liu Z. Construction of a Biomimetic Tubular Scaffold Inspired by Sea Sponge Structure: Sponge-Like Framework and Cell Guidance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416627. [PMID: 39998257 PMCID: PMC12021052 DOI: 10.1002/advs.202416627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Engineering hollow fibers with precise surface microstructures is challenging; yet, essential for guiding cells alignment and ensuring proper vascular tissue function. Inspired by Euplectella sponges, a novel strategy to engineer biomimetic hollow fibers with spiral surface microstructures is developed. Using oxidized bacterial cellulose, bacterial cellulose, and polydopamine, a "brick-and-mortar" scaffold is created through precise shear control during microfluidic coaxial spinning. The scaffold mimics natural extracellular matrices, providing mechanical stability and supporting cell growth. In vitro studies show successful co-culture of endothelial cells (ECs) and smooth muscle cells (SMCs), with SMCs aligning along spiral surface microstructures and ECs forming a confluent inner layer. In vivo implantation confirms biocompatibility, biodegradability, and low immunogenicity. This Euplectella-inspired scaffold presents a promising approach for vascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Si Meng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Nihuan Wu
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jie Fang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Yidan Yu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Xin Tang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Yihan Wang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Xiaokang Deng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Cheng Qi
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics EngineeringCollege of Mechatronics and Control EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
- Department of UrologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037China
| | - Tengda Ding
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| |
Collapse
|
2
|
Wu N, Meng S, Li Z, Fang J, Qi C, Kong T, Liu Z. Tailoring the Heterogeneous Structure of Macro-Fibers Assembled by Bacterial Cellulose Nanofibrils for Tissue Engineering Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307603. [PMID: 38213024 DOI: 10.1002/smll.202307603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Indexed: 01/13/2024]
Abstract
Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion. When cultured with endothelial cells (ECs) and smooth muscle cells (SMCs), the macro-fibers support healthy cell proliferation and exhibit a unique spiral SMC alignment, demonstrating their vascular suitability. This innovative strategy opens new avenues for advances in tissue engineering.
Collapse
Affiliation(s)
- Nihuan Wu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhen Li
- Department of Gastroenterology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 510006, China
| | - Jie Fang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518037, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
3
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Shang Z, Feng X, Chen G, Qin R, Han Y. Recent Advances on Single-Atom Catalysts for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304975. [PMID: 37528498 DOI: 10.1002/smll.202304975] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The present energy crisis and environmental challenges may be efficiently resolved by converting carbon dioxide (CO2 ) into various useful carbon products. The development of more effective catalysts has been the main focus of current research on photocatalytic CO2 reduction. Due to their high atomic efficiency and superior catalytic activity, single-atom catalysts (SACs) have attracted considerable interest in catalytic CO2 conversion. This review discusses the current research developments, obstacles, and potential of SACs for photocatalytic CO2 reduction. And further, discusses the principle of photocatalytic carbon dioxide reduction. This work has compared and analyzed the effects of support materials and active site types in SACs on photocatalytic CO2 reduction performance. This work believes that by sharing these developments, some inspiration for the rational design and development of stable and effective photocatalytic CO2 reduction catalysts based on SACs can be provided.
Collapse
Affiliation(s)
- Ziang Shang
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xueting Feng
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| |
Collapse
|
5
|
Qiu K, Zou W, Fang Z, Wang Y, Bell S, Zhang X, Tian Z, Xu X, Ji B, Li D, Huang T, Diao J. 2D MoS 2 and BN Nanosheets Damage Mitochondria through Membrane Penetration. ACS NANO 2023; 17:4716-4728. [PMID: 36848459 DOI: 10.1021/acsnano.2c11003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS2 and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells. While 2D nanomaterials at a low dose exhibited a negligible cell mortality rate, significant mitochondrial fragmentation and partially reduced mitochondrial functions occurred; cells initiate mitophagy in response to mitochondrial damages, which cleans damaged mitochondria to avoid damage accumulation. Moreover, the molecular dynamics simulation results revealed that both MoS2 and BN nanosheets can spontaneously penetrate the mitochondrial lipid membrane through the hydrophobic interaction. The membrane penetration induced heterogeneous lipid packing resulting in damages. Our results demonstrate that even at a low dose 2D nanomaterials can physically damage mitochondria by penetrating the membrane, which draws attention to carefully evaluating the cytotoxicity of 2D nanomaterials for the potential biomedical application.
Collapse
Affiliation(s)
- Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Weiwei Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Zhou Fang
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuxin Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Sam Bell
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Xiuqiong Xu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University at Buffalo, 1001 Main Street, Buffalo, New York 14203, United States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| |
Collapse
|
6
|
Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, Li T, Huang W, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zheng F, Al-Sehemi AG, Wang G, Xie Z, Zhang H. 2D materials for bone therapy. Adv Drug Deliv Rev 2021; 178:113970. [PMID: 34509576 DOI: 10.1016/j.addr.2021.113970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Due to their prominent physicochemical properties, 2D materials are broadly applied in biomedicine. Currently, 2D materials have achieved great success in treating many diseases such as cancer and tissue engineering as well as bone therapy. Based on their different characteristics, 2D materials could function in various ways in different bone diseases. Herein, the application of 2D materials in bone tissue engineering, joint lubrication, infection of orthopedic implants, bone tumors, and osteoarthritis are firstly reviewed comprehensively together. Meanwhile, different mechanisms by which 2D materials function in each disease reviewed below are also reviewed in detail, which in turn reveals the versatile functions and application of 2D materials. At last, the outlook on how to further broaden applications of 2D materials in bone therapies based on their excellent properties is also discussed.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Xianjing Han
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jindong Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chenshuo Wu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianzhong Li
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fei Zheng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Abdullah G Al-Sehemi
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Guiqing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, PR China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021; 7:3503-3529. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity of the nervous system structure and function, and its slow regeneration rate, makes it more difficult to treat compared to other tissues in the human body when an injury occurs. Moreover, the current therapeutic approaches including the use of autografts, allografts, and pharmacological agents have several drawbacks and can not fully restore nervous system injuries. Recently, nanotechnology and tissue engineering approaches have attracted many researchers to guide tissue regeneration in an effective manner. Owing to their remarkable physicochemical and biological properties, two-dimensional (2D) nanomaterials have been extensively studied in the tissue engineering and regenerative medicine field. The great conductivity of these materials makes them a promising candidate for the development of novel scaffolds for neural tissue engineering application. Moreover, the high loading capacity of 2D nanomaterials also has attracted many researchers to utilize them as a drug/gene delivery method to treat various devastating nervous system disorders. This review will first introduce the fundamental physicochemical properties of 2D nanomaterials used in biomedicine and the supporting biological properties of 2D nanomaterials for inducing neuroregeneration, including their biocompatibility on neural cells, the ability to promote the neural differentiation of stem cells, and their immunomodulatory properties which are beneficial for alleviating chronic inflammation at the site of the nervous system injury. It also discusses various types of 2D nanomaterials-based scaffolds for neural tissue engineering applications. Then, the latest progress on the use of 2D nanomaterials for nervous system disorder treatment is summarized. Finally, a discussion of the challenges and prospects of 2D nanomaterials-based applications in neural tissue engineering is provided.
Collapse
Affiliation(s)
- Alexander Halim
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xiao-Feng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
8
|
Zhang A, Wang Z, Ouyang H, Lyu W, Sun J, Cheng Y, Fu B. Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. NANOMATERIALS 2021; 11:nano11071778. [PMID: 34361163 PMCID: PMC8308201 DOI: 10.3390/nano11071778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022]
Abstract
Owing to their extraordinary physical and chemical properties, two-dimensional (2D) materials have aroused extensive attention and have been widely used in photonic and optoelectronic devices, catalytic reactions, and biomedicine. In particular, 2D materials possess a unique bandgap structure and nonlinear optical properties, which can be used as saturable absorbers in ultrafast lasers. Here, we mainly review the top-down and bottom-up methods for preparing 2D materials, such as graphene, topological insulators, transition metal dichalcogenides, black phosphorus, and MXenes. Then, we focus on the ultrafast applications of 2D materials at the typical operating wavelengths of 1, 1.5, 2, and 3 μm. The key parameters and output performance of ultrafast pulsed lasers based on 2D materials are discussed. Furthermore, an outlook regarding the fabrication methods and the development of 2D materials in ultrafast photonics is also presented.
Collapse
Affiliation(s)
- Aojie Zhang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Zihao Wang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Hao Ouyang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wenhao Lyu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Jingxuan Sun
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yuan Cheng
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; (A.Z.); (Z.W.); (H.O.); (W.L.); (J.S.); (Y.C.)
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
9
|
Fu B, Sun J, Wang C, Shang C, Xu L, Li J, Zhang H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006054. [PMID: 33590637 DOI: 10.1002/smll.202006054] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Recently, 2D materials are in great demand for various applications such as optical devices, supercapacitors, sensors, and biomedicine. MXenes as a kind of novel 2D material have attracted considerable research interest due to their outstanding mechanical, thermal, electrical, and optical properties. Especially, the excellent nonlinear optical response enables them to be potential candidates for the applications in ultrafast photonics. Here, a review of MXenes synthesis, optical properties, and applications in ultrafast lasers is presented. First, aqueous acid etching and chemical vapor deposition methods for preparing MXenes are introduced, in which the storage stability and challenges of the existing synthesis techniques are also discussed. Then, the optical properties of MXenes are discussed specifically, including plasmonic properties, optical detection, photothermal effects, and ultrafast dynamics. Furthermore, the typical ultrafast pulsed lasers enabled by MXene-based saturable absorbers operated at different wavelength regions are summarized. Finally, a summary and outlook on the development of MXenes is presented in the perspectives section.
Collapse
Affiliation(s)
- Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, 100191, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jingxuan Sun
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Cong Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lijun Xu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jiebo Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
10
|
Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, Zhang H, Lin H. Two‐Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000053] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jianghong Wu
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Hui Ma
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| | - Peng Yin
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yanqi Ge
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Han Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Hongtao Lin
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
11
|
Xu Z, Song R, Wang M, Zhang X, Liu G, Qiao G. Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study. Phys Chem Chem Phys 2020; 22:26223-26230. [PMID: 33174542 DOI: 10.1039/d0cp04315j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the wide application of NH3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom (i.e., V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N2 molecule. Particularly, the V-doped system exhibits two feasible configurations for N2 adsorption and an ultralow overpotential (0.10 V) via the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts.
Collapse
Affiliation(s)
- Ziwei Xu
- School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | | | | | | | | | | |
Collapse
|
12
|
Recent advances on TMDCs for medical diagnosis. Biomaterials 2020; 269:120471. [PMID: 33160702 DOI: 10.1016/j.biomaterials.2020.120471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have attracted much attention in biosensing and bioimaging due to its excellent stability, biocompatibility, high specific surface area, and wide varieties. In this review, we overviewed the application of TMDCs in biosensing and bioimaging. Firstly, the synthesis methods and surface functionalization methods of TMDCs were summarized. Secondly, according to the working mechanism, we classified and gave a detailed account of the latest research progress of TMDC-based biosensing for the detection of the enzyme, DNA, and other biological molecules. Then, we outlined the recent progress of applying TMDCs in bio-imaging, including fluorescence, X-ray computed tomographic, magnetic response imaging, photographic and multimodal imaging, respectively. Finally, we discussed the future challenges and development direction of the application of TMDCs in medical diagnosis. Also, we put forward our view on the opportunity of TMDCs in the big data of modern medical diagnosis.
Collapse
|
13
|
Wang H, Liang X, Xue D. Geo-inspired crystallization engineering: multifunctional materials design and fabrication at nanoscale and beyond. NANOTECHNOLOGY 2020; 31:414002. [PMID: 32559757 DOI: 10.1088/1361-6528/ab9e8f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystallization engineering aims to design and develop solutions for the optimum conversion of natural resources for use by humans, by using crystallization. Crystallization is a cross-scale process, from atoms, ions and molecules in microscale to bulk crystals in macroscale. Fabricating nanomaterials with desired performances is an open issue with multiscale challenges during crystallization. For innovation in crystallization engineering, geology may provide various sources of inspiration such as structures, compositions and formation conditions, if mineral materials can be regarded as novel artificial materials. This review shows us some geo-inspirations that enable people to create and engineer novel materials with satisfactory performance.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. University of Science and Technology of China, Hefei 230026, People's Republic of China
| | | | | |
Collapse
|
14
|
Fu B, Sun J, Wang G, Shang C, Ma Y, Ma J, Xu L, Scardaci V. Solution-processed two-dimensional materials for ultrafast fiber lasers (invited). NANOPHOTONICS 2020; 9:2169-2189. [DOI: 10.1515/nanoph-2019-0558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Abstract
Since graphene was first reported as a saturable absorber to achieve ultrafast pulses in fiber lasers, many other two-dimensional (2D) materials, such as topological insulators, transition metal dichalcogenides, black phosphorus, and MXenes, have been widely investigated in fiber lasers due to their broadband operation, ultrafast recovery time, and controllable modulation depth. Recently, solution-processing methods for the fabrication of 2D materials have attracted considerable interest due to their advantages of low cost, easy fabrication, and scalability. Here, we review the various solution-processed methods for the preparation of different 2D materials. Then, the applications and performance of solution-processing-based 2D materials in fiber lasers are discussed. Finally, a perspective of the solution-processed methods and 2D material-based saturable absorbers are presented.
Collapse
Affiliation(s)
- Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Jingxuan Sun
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Gang Wang
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Yuxuan Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Lijun Xu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering , Beihang University , Beijing 100191 , P.R. China
- School of Instrumentation and Optoelectronic Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Vittorio Scardaci
- Dipartimento di Scienze Chimiche , Universitá degli Studi di Catania , Catania , Italy
| |
Collapse
|
15
|
Li L, Pang L, Zhao Q, Wang Y, Liu W. Niobium disulfide as a new saturable absorber for an ultrafast fiber laser. NANOSCALE 2020; 12:4537-4543. [PMID: 32040131 DOI: 10.1039/c9nr10873d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Group VB transition metal dichalcogenides (TMDCs) are emerging two-dimensional materials and have attracted significant interests in the fields of physics, chemistry, and material sciences. However, there are very few reports about the optical characteristics and ultrafast photonic applications based on group VB TMDCs so far. In this work, we have calculated the niobium disulfide (NbS2) band structure by the density functional theory (DFT), which has revealed that NbS2 is a metallic TMDC. In addition, we have prepared an NbS2-microfiber device and the nonlinear optical characteristics have been investigated. The modulation depth, saturation intensity and non-saturable loss have been measured to be 13.7%, 59.93 MW cm-2 and 17.74%, respectively. Based on the nonlinear optical modulation effect, the Er-doped fiber (EDF) laser works in the soliton mode-locking state with the pump power of 94-413 mW. The pulse duration of 709 fs and the maximum average output power of 23.34 mW have been obtained at the pump power of 413 mW. The slope efficiency is as high as 6.79%. Compared to the recently reported studies based on TMDCs comprehensively, our experimental results are better. These experimental results demonstrate that NbS2 with excellent nonlinear optical properties can be used as a promising candidate to advance the development of ultrafast photonics.
Collapse
Affiliation(s)
- Lu Li
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Lihui Pang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiyi Zhao
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Yonggang Wang
- School of Physics and information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenjun Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
16
|
Yin F, Hu J, Hong Z, Wang H, Liu G, Shen J, Wang HL, Zhang KQ. A review on strategies for the fabrication of graphene fibres with graphene oxide. RSC Adv 2020; 10:5722-5733. [PMID: 35497453 PMCID: PMC9049421 DOI: 10.1039/c9ra10823h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/03/2022] Open
Abstract
Graphene fibres have been recognized as ideal building blocks to make advanced, macroscopic, and functional materials for a variety of applications. Direct fabrication of graphene fibres with ideal graphene sheets is still far from reality due to the weak intermolecular bonding between graphene sheets. In contrast, the construction of graphene oxide fibres by following a reduction process is a common compromise. The self-assembly of graphene oxide is an effective strategy for the continuous fabrication of graphene fibre. Different fabrication strategies endow graphene fibres with different performances. Over the past decade, various studies have been carried out into integrating graphene oxide nanosheets into graphene fibres. In this review, we summarize the assembly methods of graphene fibres and compare the mechanical and electrical performances of the graphene fibres fabricated by different strategies. Also the influence of the fabrication strategy on mechanical performance is discussed. Finally, the expectation of macroscopic graphene fibres in the future is further presented.
Collapse
Affiliation(s)
- Fei Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Jianchen Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Zhenglin Hong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Gang Liu
- Shanghai Institute of Spacecraft Equipment Shanghai 200240 China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| |
Collapse
|