1
|
Chen M, Liu H, Xiao Y, Liang R, Xu H, Hong B, Qian Y. Predictive biomarkers of pancreatic cancer metastasis: A comprehensive review. Clin Chim Acta 2025; 569:120176. [PMID: 39914505 DOI: 10.1016/j.cca.2025.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
This review provides a comprehensive overview of predictive biomarkers associated with metastasis in pancreatic cancer (PC), one of the most aggressive malignancies characterized by late-stage diagnosis and poor prognosis. Metastasis, particularly to the liver, lungs, and lymph nodes, significantly worsens patient outcomes by compromising organ function and promoting disease progression. Reliable biomarkers for predicting and detecting metastasis at early stages are critical for improving survival rates and guiding personalized therapies. This paper highlights both general and specific biomarkers, including genetic mutations, protein expression changes, and carbohydrate tumor markers such as CA19-9. Immunological factors, including PD-L1, inflammatory cytokines, and chemokines, further influence the metastatic process within the tumor microenvironment (TME). Specific biomarkers play pivotal roles in promoting metastasis through mechanisms such as epithelial-to-mesenchymal transition (EMT), tumor microenvironment remodeling, and immune evasion. Emerging markers such as circulating tumor cells (CTCs) and volatile organic compounds (VOCs) offer promising non-invasive tools for metastasis detection and monitoring. This review not only consolidates existing knowledge but also highlights the mechanisms through which specific biomarkers facilitate metastasis. Despite recent progress, challenges such as biomarker standardization, technical variability, and clinical validation remain, and addressing these hurdles is essential for integrating predictive biomarkers into clinical practice. Ultimately, this review contributes to advancing early detection strategies, personalized treatment options, and improved prognosis for PC patients.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ruijin Liang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Hong Xu
- Departments of Pathology, Quzhou Second People's Hospital, Quzhou 324022, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
2
|
Brooks A, Zhang Y, Chen J, Zhao CX. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Adv Healthc Mater 2024; 13:e2302436. [PMID: 38224141 DOI: 10.1002/adhm.202302436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Microfluidic chips are valuable tools for studying intricate cellular and cell-microenvironment interactions. Traditional in vitro cancer models lack accuracy in mimicking the complexities of in vivo tumor microenvironment. However, cancer-metastasis-on-a-chip (CMoC) models combine the advantages of 3D cultures and microfluidic technology, serving as powerful platforms for exploring cancer mechanisms and facilitating drug screening. These chips are able to compartmentalize the metastatic cascade, deepening the understanding of its underlying mechanisms. This article provides an overview of current CMoC models, focusing on distinctive models that simulate invasion, intravasation, circulation, extravasation, and colonization, and their applications in drug screening. Furthermore, challenges faced by CMoC and microfluidic technologies are discussed, while exploring promising future directions in cancer research. The ongoing development and integration of these models into cancer studies are expected to drive transformative advancements in the field.
Collapse
Affiliation(s)
- Anastasia Brooks
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Jiezhong Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
3
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Jackson CE, Green NH, English WR, Claeyssens F. The use of microphysiological systems to model metastatic cancer. Biofabrication 2024; 16:032002. [PMID: 38579739 DOI: 10.1088/1758-5090/ad3b70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Cancer is one of the leading causes of death in the 21st century, with metastasis of cancer attributing to 90% of cancer-related deaths. Therefore, to improve patient outcomes there is a need for better preclinical models to increase the success of translating oncological therapies into the clinic. Current traditional staticin vitromodels lack a perfusable network which is critical to overcome the diffusional mass transfer limit to provide a mechanism for the exchange of essential nutrients and waste removal, and increase their physiological relevance. Furthermore, these models typically lack cellular heterogeneity and key components of the immune system and tumour microenvironment. This review explores rapidly developing strategies utilising perfusable microphysiological systems (MPS) for investigating cancer cell metastasis. In this review we initially outline the mechanisms of cancer metastasis, highlighting key steps and identifying the current gaps in our understanding of the metastatic cascade, exploring MPS focused on investigating the individual steps of the metastatic cascade before detailing the latest MPS which can investigate multiple components of the cascade. This review then focuses on the factors which can affect the performance of an MPS designed for cancer applications with a final discussion summarising the challenges and future directions for the use of MPS for cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, United Kingdom
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
5
|
Mohan MD, Latifi N, Flick R, Simmons CA, Young EWK. Interrogating Matrix Stiffness and Metabolomics in Pancreatic Ductal Carcinoma Using an Openable Microfluidic Tumor-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38606850 DOI: 10.1021/acsami.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma that contributes to aggressive tumor biology and therapeutic resistance. Current in vitro PDAC models lack sufficient optical and physical access for fibrous network visualization, in situ mechanical stiffness measurement, and metabolomic profiling. Here, we describe an openable multilayer microfluidic PDAC-on-a-chip platform that consists of pancreatic tumor cells (PTCs) and pancreatic stellate cells (PSCs) embedded in a 3D collagen matrix that mimics the stroma. Our system allows fibrous network visualization via reflected light confocal (RLC) microscopy, in situ mechanical stiffness testing using atomic force microscopy (AFM), and compartmentalized hydrogel extraction for PSC metabolomic profiling via mass spectrometry (MS) analysis. In comparing cocultures of gel-embedded PSCs and PTCs with PSC-only monocultures, RLC microscopy identified a significant decrease in pore size and corresponding increase in fiber density. In situ AFM indicated significant increases in stiffness, and hallmark characteristics of PSC activation were observed using fluorescence microscopy. PSCs in coculture also demonstrated localized fiber alignment and densification as well as increased collagen production. Finally, an untargeted MS study putatively identified metabolic contributions consistent with in vivo PDAC studies. Taken together, this platform can potentially advance our understanding of tumor-stromal interactions toward the discovery of novel therapies.
Collapse
Affiliation(s)
- Michael D Mohan
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| | - Neda Latifi
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, Florida 33620, United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Craig A Simmons
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
6
|
Ko J, Song J, Lee Y, Choi N, Kim HN. Understanding organotropism in cancer metastasis using microphysiological systems. LAB ON A CHIP 2024; 24:1542-1556. [PMID: 38192269 DOI: 10.1039/d3lc00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Cancer metastasis, the leading cause of cancer-related deaths, remains a complex challenge in medical science. Stephen Paget's "seed and soil theory" introduced the concept of organotropism, suggesting that metastatic success depends on specific organ microenvironments. Understanding organotropism not only offers potential for curbing metastasis but also novel treatment strategies. Microphysiological systems (MPS), especially organ-on-a-chip models, have emerged as transformative tools in this quest. These systems, blending microfluidics, biology, and engineering, grant precise control over cell interactions within organ-specific microenvironments. MPS enable real-time monitoring, morphological analysis, and protein quantification, enhancing our comprehension of cancer dynamics, including tumor migration, vascularization, and pre-metastatic niches. In this review, we explore innovative applications of MPS in investigating cancer metastasis, particularly focusing on organotropism. This interdisciplinary approach converges the field of science, engineering, and medicine, thereby illuminating a path toward groundbreaking discoveries in cancer research.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Yedam Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Kpeglo D, Haddrick M, Knowles MA, Evans SD, Peyman SA. Modelling and breaking down the biophysical barriers to drug delivery in pancreatic cancer. LAB ON A CHIP 2024; 24:854-868. [PMID: 38240720 DOI: 10.1039/d3lc00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) stroma and its inherent biophysical barriers to drug delivery are central to therapeutic resistance. This makes PDAC the most prevalent pancreatic cancer with poor prognosis. The chemotherapeutic drug gemcitabine is used against various solid tumours, including pancreatic cancer, but with only a modest effect on patient survival. The growing PDAC tumour mass with high densities of cells and extracellular matrix (ECM) proteins, i.e., collagen, results in high interstitial pressure, leading to vasculature collapse and a dense, hypoxic, mechanically stiff stroma with reduced interstitial flow, critical to drug delivery to cells. Despite this, most drug studies are performed on cellular models that neglect these biophysical barriers to drug delivery. Microfluidic technology offers a promising platform to emulate tumour biophysical characteristics with appropriate flow conditions and transport dynamics. We present a microfluidic PDAC culture model, encompassing the disease's biophysical barriers to therapeutics, to evaluate the use of the angiotensin II receptor blocker losartan, which has been found to have matrix-depleting properties, on improving gemcitabine efficacy. PDAC cells were seeded into our 5-channel microfluidic device for a 21-day culture to mimic the rigid, collagenous PDAC stroma with reduced interstitial flow, which is critical to drug delivery to the cancer cells, and for assessment with gemcitabine and losartan treatment. With losartan, our culture matrix was more porous with less collagen, resulting in increased hydraulic conductivity of the culture interstitial space and improved gemcitabine effect. We demonstrate the importance of modelling tumour biophysical barriers to successfully assess new drugs and delivery methods.
Collapse
Affiliation(s)
- Delanyo Kpeglo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Block 35, Mereside Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Sally A Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| |
Collapse
|
8
|
Urbanova M, Cihova M, Buocikova V, Slopovsky J, Dubovan P, Pindak D, Tomas M, García-Bermejo L, Rodríguez-Garrote M, Earl J, Kohl Y, Kataki A, Dusinska M, Sainz B, Smolkova B, Gabelova A. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165:115179. [PMID: 37481927 DOI: 10.1016/j.biopha.2023.115179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Maria Urbanova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Verona Buocikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Slopovsky
- 2nd Department of Oncology, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
| | - Peter Dubovan
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Daniel Pindak
- Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Miroslav Tomas
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area4, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Agapi Kataki
- 1st Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vasilissis Sofias 114, 11527 Athens, Greece
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Bruno Sainz
- CIBERONC, Madrid, Spain; Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia..
| |
Collapse
|
9
|
Cheng C, Deneke N, Moon HR, Choi SR, Ospina-Muñoz N, Elzey BD, Davis CS, Chiu GTC, Han B. Inkjet-printed morphogenesis of tumor-stroma interface using bi-cellular bioinks of collagen-poly(N-isopropyl acrylamide-co-methyl methacrylate) mixture. MATERIALS TODAY. ADVANCES 2023; 19:100408. [PMID: 37691883 PMCID: PMC10486313 DOI: 10.1016/j.mtadv.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recent advances in biomaterials and 3D printing/culture methods enable various tissue-engineered tumor models. However, it is still challenging to achieve native tumor-like characteristics due to lower cell density than native tissues and prolonged culture duration for maturation. Here, we report a new method to create tumoroids with a mechanically active tumor-stroma interface at extremely high cell density. This method, named "inkjet-printed morphogenesis" (iPM) of the tumor-stroma interface, is based on a hypothesis that cellular contractile force can significantly remodel the cell-laden polymer matrix to form densely-packed tissue-like constructs. Thus, differential cell-derived compaction of tumor cells and cancer-associated fibroblasts (CAFs) can be used to build a mechanically active tumor-stroma interface. In this methods, two kinds of bioinks are prepared, in which tumor cells and CAFs are suspended respectively in the mixture of collagen and poly (N-isopropyl acrylamide-co-methyl methacrylate) solution. These two cellular inks are inkjet-printed in multi-line or multi-layer patterns. As a result of cell-derived compaction, the resulting structure forms tumoroids with mechanically active tumor-stroma interface at extremely high cell density. We further test our working hypothesis that the morphogenesis can be controlled by manipulating the force balance between cellular contractile force and matrix stiffness. Furthermore, this new concept of "morphogenetic printing" is demonstrated to create more complex structures beyond current 3D bioprinting techniques.
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Bennett D. Elzey
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Chelsea S. Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - George T.-C Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Hetzel LA, Ali A, Corbo V, Hankemeier T. Microfluidics and Organoids, the Power Couple of Developmental Biology and Oncology Studies. Int J Mol Sci 2023; 24:10882. [PMID: 37446057 DOI: 10.3390/ijms241310882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Organoids are an advanced cell model that hold the key to unlocking a deeper understanding of in vivo cellular processes. This model can be used in understanding organ development, disease progression, and treatment efficacy. As the scientific world embraces the model, it must also establish the best practices for cultivating organoids and utilizing them to the greatest potential in assays. Microfluidic devices are emerging as a solution to overcome the challenges of organoids and adapt assays. Unfortunately, the various applications of organoids often depend on specific features in a device. In this review, we discuss the options and considerations for features and materials depending on the application and development of the organoid.
Collapse
Affiliation(s)
- Laura Ann Hetzel
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ahmed Ali
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, ARC-Net Research Centre, University of Verona, 37134 Verona, Italy
| | - Thomas Hankemeier
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
11
|
Moon HR, Saha S, Mugler A, Han B. Cells function as a ternary logic gate to decide migration direction under integrated chemical and fluidic cues. LAB ON A CHIP 2023; 23:631-644. [PMID: 36524874 PMCID: PMC9926949 DOI: 10.1039/d2lc00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Cells sense various environmental cues and subsequently process intracellular signals to decide their migration direction in many physiological and pathological processes. Although several signaling molecules and networks have been identified in these directed migrations, it still remains ambiguous to predict the migration direction under multiple and integrated cues, specifically chemical and fluidic cues. Here, we investigated the cellular signal processing machinery by reverse-engineering directed cell migration under integrated chemical and fluidic cues. We imposed controlled chemical and fluidic cues to cells using a microfluidic platform and analyzed the extracellular coupling of the cues with respect to the cellular detection limit. Then, the cell's migratory behavior was reverse-engineered to build a cellular signal processing system as a logic gate, which is based on a "selection" gate. This framework is further discussed with a minimal intracellular signaling network of a shared pathway model. The proposed framework of the ternary logic gate suggests a systematic view to understand how cells decode multiple cues and make decisions about the migration direction.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Epithelial to Mesenchymal Transition as Mechanism of Progression of Pancreatic Cancer: From Mice to Men. Cancers (Basel) 2022; 14:cancers14235797. [PMID: 36497278 PMCID: PMC9735867 DOI: 10.3390/cancers14235797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Owed to its aggressive yet subtle nature, pancreatic cancer remains unnoticed till an advanced stage so that in most cases the diagnosis is made when the cancer has already spread to other organs with deadly efficiency. The progression from primary tumor to metastasis involves an intricate cascade of events comprising the pleiotropic process of epithelial to mesenchymal transition (EMT) facilitating cancer spread. The elucidation of this pivotal phenotypic change in cancer cell morphology, initially heretic, moved from basic studies dissecting the progression of pancreatic cancer in animal models to move towards human disease, although no clinical translation of the concept emerged yet. Despite this transition, a full-blown mesenchymal phenotype may not be accomplished; rather, the plasticity of the program and its dependency on heterotopic signals implies a series of fluctuating modifications of cancer cells encompassing mesenchymal and epithelial features. Despite the evidence supporting the activation of EMT and MET during cancer progression, our understanding of the relationship between tumor microenvironment and EMT is not yet mature for a clinical application. In this review, we attempt to resume the knowledge on EMT and pancreatic cancer, aiming to include the EMT among the hallmarks of cancer that could potentially modify our clinical thinking with the purpose of filling the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers, as well as their application for prognostic and predictive purposes.
Collapse
|
13
|
Mehta P, Rahman Z, Ten Dijke P, Boukany PE. Microfluidics meets 3D cancer cell migration. Trends Cancer 2022; 8:683-697. [PMID: 35568647 DOI: 10.1016/j.trecan.2022.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 01/12/2023]
Abstract
An early step of metastasis requires a complex and coordinated migration of invasive tumor cells into the surrounding tumor microenvironment (TME), which contains extracellular matrix (ECM). It is being appreciated that 3D matrix-based microfluidic models have an advantage over conventional in vitro and animal models to study tumor progression events. Recent microfluidic models have enabled recapitulation of key mechanobiological features present within the TME to investigate collective cancer cell migration and invasion. Microfluidics also allows for functional interrogation and therapeutic manipulation of specific steps to study the dynamic aspects of tumor progression. In this review, we focus on recent developments in cancer cell migration and how microfluidic strategies have evolved to address the physiological complexities of the TME to visualize migration modes adapted by various tumor cells.
Collapse
Affiliation(s)
- Pranav Mehta
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands; Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
14
|
Haque MR, Wessel CR, Leary DD, Wang C, Bhushan A, Bishehsari F. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. MICROSYSTEMS & NANOENGINEERING 2022; 8:36. [PMID: 35450328 PMCID: PMC8971446 DOI: 10.1038/s41378-022-00370-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 02/20/2022] [Indexed: 05/08/2023]
Abstract
The patient population suffering from pancreatic ductal adenocarcinoma (PDAC) presents, as a whole, with a high degree of molecular tumor heterogeneity. The heterogeneity of PDAC tumor composition has complicated treatment and stalled success in clinical trials. Current in vitro techniques insufficiently replicate the intricate stromal components of PDAC tumor microenvironments (TMEs) and fail to model a given tumor's unique genetic phenotype. The development of patient-derived organoids (PDOs) has opened the door for improved personalized medicine since PDOs are derived directly from patient tumors, thus preserving the tumors' unique behaviors and genetic phenotypes. This study developed a tumor-chip device engineered to mimic the PDAC TME by incorporating PDOs and stromal cells, specifically pancreatic stellate cells and macrophages. Establishing PDOs in a multicellular microfluidic chip device prolongs cellular function and longevity and successfully establishes a complex organotypic tumor environment that incorporates desmoplastic stroma and immune cells. When primary cancer cells in monoculture were subjected to stroma-depleting agents, there was no effect on cancer cell viability. However, targeting stroma in our tumor-chip model resulted in a significant increase in the chemotherapy effect on cancer cells, thus validating the use of this tumor-chip device for drug testing.
Collapse
Affiliation(s)
- Muhammad R. Haque
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL 60612 USA
| | - Caitlin R. Wessel
- University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - Daniel D. Leary
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL 60612 USA
| | - Chengyao Wang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Faraz Bishehsari
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
15
|
Geyer M, Queiroz K. Microfluidic Platforms for High-Throughput Pancreatic Ductal Adenocarcinoma Organoid Culture and Drug Screening. Front Cell Dev Biol 2022; 9:761807. [PMID: 35004672 PMCID: PMC8733732 DOI: 10.3389/fcell.2021.761807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC), the most common pancreatic cancer type, is believed to become the second leading cause of cancer-related deaths by 2030 with mortality rates of up to 93%. It is often detected at a late stage due to lacking symptoms, and therefore surgical removal of the tumor is the only treatment option for patients. Only 20% of the tumors are resectable, mainly due to early metastasis. Therefore, for 80% of cases chemotherapeutic treatment is the leading therapy for patients. PDAC is characterized by high-density stroma which induces hypoxic conditions and high interstitial pressure. These factors impact carcinogenesis and progression of PDAC and support the formation of an immunosuppressive microenvironment that renders this tumor type refractory to immunotherapies. Most in vitro PDAC models have limited translational relevance, as these fail to recapitulate relevant aspects of PDAC complexity. Altogether, there is an urgent need for novel and innovative PDAC modeling platforms. Here, we discuss the relevance of microfluidic and organoid technologies as platforms for modeling bio- and physicochemical features of PDAC and as translational models that enable high-throughput phenotypic drug screenings, while also allowing for the development of novel personalized models used to identify treatment responsive patient subsets.
Collapse
|
16
|
Moon HR, Saha S, Mugler A, Han B. Signal processing capacity of the cellular sensory machinery regulates the accuracy of chemotaxis under complex cues. iScience 2021; 24:103242. [PMID: 34746705 PMCID: PMC8554535 DOI: 10.1016/j.isci.2021.103242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 10/29/2022] Open
Abstract
Chemotaxis is ubiquitous in many biological processes, but it still remains elusive how cells sense and decipher multiple chemical cues. In this study, we postulate a hypothesis that the chemotactic performance of cells under complex cues is regulated by the signal processing capacity of the cellular sensory machinery. The underlying rationale is that cells in vivo should be able to sense and process multiple chemical cues, whose magnitude and compositions are entangled, to determine their migration direction. We experimentally show that the combination of transforming growth factor-β and epidermal growth factor suppresses the chemotactic performance of cancer cells using independent receptors to sense the two cues. Based on this observation, we develop a biophysical framework suggesting that the antagonism is caused by the saturation of the signal processing capacity but not by the mutual repression. Our framework suggests the significance of the signal processing capacity in the cellular sensory machinery.
Collapse
Affiliation(s)
- Hye-ran Moon
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara St, Pittsburgh, PA 15260, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Venis SM, Moon HR, Yang Y, Utturkar SM, Konieczny SF, Han B. Engineering of a functional pancreatic acinus with reprogrammed cancer cells by induced PTF1a expression. LAB ON A CHIP 2021; 21:3675-3685. [PMID: 34581719 PMCID: PMC9175079 DOI: 10.1039/d1lc00350j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A pancreatic acinus is a functional unit of the exocrine pancreas producing digest enzymes. Its pathobiology is crucial to pancreatic diseases including pancreatitis and pancreatic cancer, which can initiate from pancreatic acini. However, research on pancreatic acini has been significantly hampered due to the difficulty of culturing normal acinar cells in vitro. In this study, an in vitro model of the normal acinus, named pancreatic acinus-on-chip (PAC), is developed using reprogrammed pancreatic cancer cells. The developed model is a microfluidic platform with an epithelial duct and acinar sac geometry microfabricated by a newly developed two-step controlled "viscous-fingering" technique. In this model, human pancreatic cancer cells, Panc-1, reprogrammed to revert to the normal state upon induction of PTF1a gene expression, are cultured. Bioinformatic analyses suggest that, upon induced PTF1a expression, Panc-1 cells transition into a more normal and differentiated acinar phenotype. The microanatomy and exocrine functions of the model are characterized to confirm the normal acinus phenotypes. The developed model provides a new and reliable testbed to study the initiation and progression of pancreatic cancers.
Collapse
Affiliation(s)
- Stephanie M Venis
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Yi Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sagar M Utturkar
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13174487. [PMID: 34503294 PMCID: PMC8430573 DOI: 10.3390/cancers13174487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Among all types of cancer, Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest survival rates, partly due to the failure of current chemotherapeutics. This treatment failure can be attributed to the complicated nature of the tumor microenvironment, where the rich fibro-inflammatory responses can hinder drug delivery and efficacy at the tumor site. Moreover, the high molecular variations in PDAC create a large heterogeneity in the tumor microenvironment among patients. Current in vivo and in vitro options for drug testing are mostly ineffective in recapitulating the complex cellular interactions and individual variations in the PDAC tumor microenvironment, and as a result, they fail to provide appropriate models for individualized drug screening. Organ-on-a-chip technology combined with patient-derived organoids may provide the opportunity for developing personalized treatment options in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) is an expeditiously fatal malignancy with a five-year survival rate of 6–8%. Conventional chemotherapeutics fail in many cases due to inadequate primary response and rapidly developing resistance. This treatment failure is particularly challenging in pancreatic cancer because of the high molecular heterogeneity across tumors. Additionally, a rich fibro-inflammatory component within the tumor microenvironment (TME) limits the delivery and effectiveness of anticancer drugs, further contributing to the lack of response or developing resistance to conventional approaches in this cancer. As a result, there is an urgent need to model pancreatic cancer ex vivo to discover effective drug regimens, including those targeting the components of the TME on an individualized basis. Patient-derived three-dimensional (3D) organoid technology has provided a unique opportunity to study patient-specific cancerous epithelium. Patient-derived organoids cultured with the TME components can more accurately reflect the in vivo tumor environment. Here we present the advances in organoid technology and multicellular platforms that could allow for the development of “organ-on-a-chip” approaches to recapitulate the complex cellular interactions in PDAC tumors. We highlight the current advances of the organ-on-a-chip-based cancer models and discuss their potential for the preclinical selection of individualized treatment in PDAC.
Collapse
|
19
|
Bērziņa S, Harrison A, Taly V, Xiao W. Technological Advances in Tumor-On-Chip Technology: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13164192. [PMID: 34439345 PMCID: PMC8394443 DOI: 10.3390/cancers13164192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Various 3D in vitro tumor models are rapidly advancing cancer research. Unlike animal models, they can be produced quickly and are amenable to high-throughput studies. Growing tumor spheroids in microfluidic tumor-on-chip platforms has particularly elevated the capabilities of such models. Tumor-on-chip devices can mimic multiple aspects of the dynamic in vivo tumor microenvironment in a precisely controlled manner. Moreover, new technologies for the on- and off-chip analysis of these tumor mimics are continuously emerging. There is thus an urgent need to review the latest developments in this rapidly progressing field. Here, we present an overview of the technological advances in tumor-on-chip technology by reviewing state-of-the-art tools for on-chip analysis. In particular, we evaluate the potential for tumor-on-chip technology to guide personalized cancer therapies. We strive to appeal to cancer researchers and biomedical engineers alike, informing on current progress, while provoking thought on the outstanding developments needed to achieve clinical-stage research. Abstract Tumor-on-chip technology has cemented its importance as an in vitro tumor model for cancer research. Its ability to recapitulate different elements of the in vivo tumor microenvironment makes it promising for translational medicine, with potential application in enabling personalized anti-cancer therapies. Here, we provide an overview of the current technological advances for tumor-on-chip generation. To further elevate the functionalities of the technology, these approaches need to be coupled with effective analysis tools. This aspect of tumor-on-chip technology is often neglected in the current literature. We address this shortcoming by reviewing state-of-the-art on-chip analysis tools for microfluidic tumor models. Lastly, we focus on the current progress in tumor-on-chip devices using patient-derived samples and evaluate their potential for clinical research and personalized medicine applications.
Collapse
|
20
|
Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CC, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021; 175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.
Collapse
|
21
|
Pan H, Diao H, Zhong W, Wang T, Wen P, Wu C. A Cancer Cell Cluster Marked by LincRNA MEG3 Leads Pancreatic Ductal Adenocarcinoma Metastasis. Front Oncol 2021; 11:656564. [PMID: 34055623 PMCID: PMC8155708 DOI: 10.3389/fonc.2021.656564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence worldwide. Late detection and particularly aggressive characteristics are the major challenges that lead to therapeutic failure of this disease. A well described gene program and core regulators are yet to be discovered to drive the metastasis of the PDAC cells. As the development of single cell omics technologies including single cell RNA-sequencing (scRNA-seq), detailed characterization of the cellular composition of solid tumors and their microenvironments are well elaborated. In the current study, we accessed a recently published scRNA-seq dataset on primary and metastatic PDAC tissues and subset the tumor cells. By comparative analysis, we profiled the differentially expressed gene programs of primary and metastatic PDAC and found several long intergenic non-coding RNAs (LincRNAs) in top genes. The PDAC cancer cells showed some heterogeneity and were divided into four major subclusters based on gene profiles, one of which was mostly contributed by metastatic PDAC. Interestingly, this subcluster was remarkably marked by one of the above LincRNAs, MEG3, and exhibited significantly increased Epithelial-Mesenchymal-Transition (EMT) signatures. Ingenuity Pathway Analysis (IPA) on the signature genes of this subcluster gave multiple cancer metastasis associated and EMT signaling pathways, suggesting a critical role of this cluster in leading tumor cell metastasis. Taken together, this study displayed a PDAC cancer subcluster and its marker gene, biologically targeting of which might significantly attenuate the metastasis of tumor and might be a potential strategy for the therapeutic treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunli Wu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Delle Cave D, Rizzo R, Sainz B, Gigli G, del Mercato LL, Lonardo E. The Revolutionary Roads to Study Cell-Cell Interactions in 3D In Vitro Pancreatic Cancer Models. Cancers (Basel) 2021; 13:930. [PMID: 33672435 PMCID: PMC7926501 DOI: 10.3390/cancers13040930] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain;
- Spain and Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Enza Lonardo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
23
|
Choi SR, Yang Y, Huang KY, Kong HJ, Flick MJ, Han B. Engineering of biomaterials for tumor modeling. MATERIALS TODAY. ADVANCES 2020; 8:100117. [PMID: 34541484 PMCID: PMC8448271 DOI: 10.1016/j.mtadv.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development of biomaterials mimicking tumor and its microenvironment has recently emerged for the use of drug discovery, precision medicine, and cancer biology. These biomimetic models have developed by reconstituting tumor and stroma cells within the 3D extracellular matrix. The models are recently extended to recapitulate the in vivo tumor microenvironment, including biological, chemical, and mechanical conditions tailored for specific cancer type and its microenvironment. In spite of the recent emergence of various innovative engineered tumor models, many of these models are still early stage to be adapted for cancer research. In this article, we review the current status of biomaterials engineering for tumor models considering three main aspects - cellular engineering, matrix engineering, and engineering for microenvironmental conditions. Considering cancer-specific variability in these aspects, our discussion is focused on pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). In addition, we further discussed the current challenges and future opportunities to create reliable and relevant tumor models.
Collapse
Affiliation(s)
- Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Joon Kong
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
24
|
Hayward KL, Kouthouridis S, Zhang B. Organ-on-a-Chip Systems for Modeling Pathological Tissue Morphogenesis Associated with Fibrosis and Cancer. ACS Biomater Sci Eng 2020; 7:2900-2925. [PMID: 34275294 DOI: 10.1021/acsbiomaterials.0c01089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tissue building does not occur exclusively during development. Even after a whole body is built from a single cell, tissue building can occur to repair and regenerate tissues of the adult body. This confers resilience and enhanced survival to multicellular organisms. However, this resiliency comes at a cost, as the potential for misdirected tissue building creates vulnerability to organ deformation and dysfunction-the hallmarks of disease. Pathological tissue morphogenesis is associated with fibrosis and cancer, which are the leading causes of morbidity and mortality worldwide. Despite being the priority of research for decades, scientific understanding of these diseases is limited and existing therapies underdeliver the desired benefits to patient outcomes. This can largely be attributed to the use of two-dimensional cell culture and animal models that insufficiently recapitulate human disease. Through the synergistic union of biological principles and engineering technology, organ-on-a-chip systems represent a powerful new approach to modeling pathological tissue morphogenesis, one with the potential to yield better insights into disease mechanisms and improved therapies that offer better patient outcomes. This Review will discuss organ-on-a-chip systems that model pathological tissue morphogenesis associated with (1) fibrosis in the context of injury-induced tissue repair and aging and (2) cancer.
Collapse
Affiliation(s)
- Kristen L Hayward
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
25
|
Moon HR, Ozcelikkale A, Yang Y, Elzey BD, Konieczny SF, Han B. An engineered pancreatic cancer model with intra-tumoral heterogeneity of driver mutations. LAB ON A CHIP 2020; 20:3720-3732. [PMID: 32909573 PMCID: PMC9178523 DOI: 10.1039/d0lc00707b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a complex disease with significant intra-tumoral heterogeneity (ITH). Currently, no reliable PDAC tumor model is available that can present ITH profiles in a controlled manner. We develop an in vitro microfluidic tumor model mimicking the heterogeneous accumulation of key driver mutations of human PDAC using cancer cells derived from genetically engineered mouse models. These murine pancreatic cancer cell lines have KPC (Kras and Trp53 mutations) and KIC genotypes (Kras mutation and Cdkn2a deletion). Also, the KIC genotypes have two distinct phenotypes - mesenchymal or epithelial. The tumor model mimics the ITH of human PDAC to study the effects of ITH on the gemcitabine response. The results show gemcitabine resistance induced by ITH. Remarkably, it shows that cancer cell-cell interactions induce the gemcitabine resistance potentially through epithelial-mesenchymal-transition. The tumor model can provide a useful testbed to study interaction mechanisms between heterogeneous cancer cell subpopulations.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | | | | | | | | |
Collapse
|