1
|
Wang J, Huang D, Chen D, Ren H, Zhao Y. Emerging Functional Porous Scaffolds for Liver Tissue Engineering. Adv Healthc Mater 2024:e2403741. [PMID: 39722150 DOI: 10.1002/adhm.202403741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Liver tissue engineering holds promising in synthesizing or regenerating livers, while the design of functional scaffold remains a challenge. Owing to the intricate simulation of extracellular matrix structure and performance, porous scaffolds have demonstrated advantages in creating liver microstructures and sustaining liver functions. Currently, various methods and processes have been employed to fabricate porous scaffolds, manipulating the properties and morphologies of materials to confer them with unique supportive functions. Additionally, scaffolds must also facilitate tissue growth and deliver cells, possessing therapeutic or regenerative effects. In this review, it is initially outline typical procedures for fabricating porous scaffolds and showcase various morphologies of microstructures. Subsequently, it is delved into the forms of cell loading in porous scaffolds, including scaffold-based, scaffold-free, and synergetic or bioassembly approaches. Lastly, the utilization of porous scaffolds in liver diseases, offering significant insights and future implications for liver regeneration research in tissue engineering is explored.
Collapse
Affiliation(s)
- Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Danqing Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dayu Chen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Sun M, Zhang J, Xuanyuan T, Liu X, Liu W. Facile and Rapid Microcontact Printing of Additive-Free Polydimethylsiloxane for Biological Patterning Diversity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597685 DOI: 10.1021/acsami.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The development and application of micropatterning technology play a promising role in the manipulation of biological substances and the exploration of life sciences at the microscale. However, the universally adaptable micropatterning method with user-friendly properties for acceptance in routine laboratories remains scarce. Herein, a green, facile, and rapid microcontact printing method is reported for upgrading popularization and diversification of biological patterning. The three-step printing can achieve high simplicity and fidelity of additive-free polydimethylsiloxane (PDMS) micropatterning and chip fabrication within 8 min as well as keep their high stability and diversity. A detailed experimental report is provided to support the advanced microcontact printing method. Furthermore, the applications of easy-to-operate PDMS-patterned chips are extensively validated to complete microdroplet array assembly with spatial control, cell pattern formation with high efficiency and geometry customization, and microtissue assembly and biomimetic tumor construction on a large scale. This straightforward method promotes diverse micropatternings with minimal time, effort, and expertise and maximal biocompatibility, which might broaden its applications in interdisciplinary scientific communities. This work also offers an insight into the establishment of popularized and market-oriented microtools for biomedical purposes such as biosensing, organs on a chip, cancer research, and bioscreening.
Collapse
Affiliation(s)
- Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xufang Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
3
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
4
|
Zhao W, Yan Y, Chen X, Wang T. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning. Innovation (N Y) 2022; 3:100253. [PMID: 35602121 PMCID: PMC9117940 DOI: 10.1016/j.xinn.2022.100253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggregates into scalable, controllable, and affordable functional devices remains challenging. Printing is a promising additive manufacturing technology for fabricating devices from NP building blocks because of its capabilities for rapid prototyping and versatile multifunctional manufacturing. This paper reviews recent advances in NP patterning based on the combination of self-assembly and printing technologies (including two-, three-, and four-dimensional printing), introduces the basic characteristics of these methods, and discusses various fields of NP patterning applications. Nanoparticles (NPs) printing assembly is a good solution for patterned devices NPs assembly can be combined with 2D, 3D, and 4D printing technologies A variety of ink-dispersed NPs are available for printing assembly NPs printing assembly technology is applied for nanosensing, energy storage, photodetector
Collapse
Affiliation(s)
- Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanling Yan
- National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- Corresponding author
| |
Collapse
|
5
|
Akarsu P, Grobe R, Nowaczyk J, Hartlieb M, Reinicke S, Böker A, Sperling M, Reifarth M. Solid-Phase Microcontact Printing for Precise Patterning of Rough Surfaces: Using Polymer-Tethered Elastomeric Stamps for the Transfer of Reactive Silanes. ACS APPLIED POLYMER MATERIALS 2021; 3:2420-2431. [PMID: 34056615 PMCID: PMC8154209 DOI: 10.1021/acsapm.1c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/02/2023]
Abstract
We present a microcontact printing (μCP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (1H-1H-NOESY-NMR). We analyze the μCP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates.
Collapse
Affiliation(s)
- Pinar Akarsu
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Richard Grobe
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Julius Nowaczyk
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Matthias Hartlieb
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Stefan Reinicke
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Alexander Böker
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
- Chair
of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Marcel Sperling
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Martin Reifarth
- Fraunhofer
Institute for Applied Polymer Research (IAP) Geiselbergstr. 69, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Zhu S, Tang Y, Lin C, Liu XY, Lin Y. Recent Advances in Patterning Natural Polymers: From Nanofabrication Techniques to Applications. SMALL METHODS 2021; 5:e2001060. [PMID: 34927826 DOI: 10.1002/smtd.202001060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Indexed: 06/14/2023]
Abstract
The development of a flexible and efficient strategy to precisely fabricate polymer patterns is increasingly significant for many research areas, especially for cell biology, pharmaceutical science, tissue engineering, soft photonics, and bioelectronics. Recent advances of patterning natural polymers using various nanofabrication techniques, including photolithography, electron-beam lithography, dip-pen nanolithography, inkjet printing, soft lithography, and nanoimprint lithography are discussed here. Integrating nanofabrication techniques with naturally derived macromolecules provides a feasible route for transforming these polymer materials into versatile and sophisticated devices while maintaining their intrinsic and excellent properties. Furthermore, the corresponding applications of these natural polymer patterns generated by the above techniques are elaborated. In the end, a summary of this promising research field is offered and an outlook for the future is given. It is expected that advances in precise spatial patterns of natural polymers would provide new avenues for various applications, such as tissue engineering, flexible electronics, biomedical diagnosis, and soft photonics.
Collapse
Affiliation(s)
- Shuihong Zhu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Changxu Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Xiang Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Development of Gold Nanoparticle Micropatterns for the Electrical Detection of Proteins. NANOMATERIALS 2021; 11:nano11020528. [PMID: 33669510 PMCID: PMC7922899 DOI: 10.3390/nano11020528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/16/2022]
Abstract
Protein analysis can be used to efficiently detect the early stages of various diseases. However, conventional protein detection platforms require expensive or complex equipment, which has been a major obstacle to their widespread application. In addition, uncertain signals from non-specific adhesion interfere with the precise interpretation of the results. To overcome these problems, the development of a technique that can detect the proteins in a simple method is needed. In this study, a platform composed of gold nanoparticles (GNPs) was fabricated through a simple imprinting method for protein detection. The corrugated surface naturally formed by the nanoparticle assemblies simultaneously increases the efficiency of adhesion and binding with analytes and reduces undesired interactions. After forming the GNP micropatterns, post-functionalization with both cationic and neutral ligands was performed on the surface to manipulate their electrostatic interaction with proteins. Upon protein binding, the change in the electrical values of the micropatterns was recorded by using a resistance meter. The resistance of the positively charged micropatterns was found to increase due to the electrostatic interaction with proteins, while no significant change in resistance was observed for the neutral micropatterns after immersion in a protein solution. Additionally, the selective adsorption of fluorescent proteins onto the micropatterns was captured using confocal microscopy. These simply imprinted GNP micropatterns are sensitive platforms that can detect various analytes by measuring the electrical resistance with portable equipment.
Collapse
|