1
|
Ceballos-González CF, Bolívar-Monsalve EJ, Velásquez-Marín S, Rendón-Moreno II, Mora-Rizo A, Quevedo-Moreno DA, Hassani Najafabadi A, Khademhosseini A, Weiss PS, Alvarez MM, Trujillo-de Santiago G. Chaos-Assisted Production of Micro-Architected Spheres (CAPAS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402221. [PMID: 39161204 DOI: 10.1002/smll.202402221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Hydrogel droplets with inner compartments are valuable in various fields, including tissue engineering. A droplet-based biofabrication method is presented for the chaos-assisted production of architected spheres (CAPAS) for the rapid generation of multilayered hydrogel spheres (ranging from 0.6 to 3.5 mm in diameter) at high-throughput rates (up to 2000 spheres per min). This method is based on the use of chaotic advection generated by a Kenics static mixer (KSM) nozzle. The configuration of the KSM (i.e., the number of mixing elements) determines the number of compartments within the sphere. Sphere size is adjusted by flow rate, printhead outlet diameter, polymer concentration (sodium alginate or gelatin-methacryloyl (GelMA)), and crosslinking bath composition. This versatile system operates in dripping and jetting modes, preserving multilayered architecture in both modes. Proof-of-concept experiments with breast cancer (MDA-MB-231), human dermal fibroblast (HDF), and murine myoblast (C2C12) lines show over 80% cell viability immediately post-fabrication, maintained over extended culture (14 or 30 days). CAPAS is used to create a breast cancer model with cancer-tissue-like and healthy-tissue-like micro-niches to test paclitaxel doses. It is envisioned that CAPAS will enable high-throughput fabrication of hydrogel spheres for tissue engineering, chemical engineering, and material sciences applications.
Collapse
Affiliation(s)
- Carlos Fernando Ceballos-González
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, 90094, USA
- Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Edna Johana Bolívar-Monsalve
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, 90094, USA
- Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | | | - Abraham Mora-Rizo
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | | | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, 90094, USA
- Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| |
Collapse
|
2
|
Wang X, Xu Y, Xiang S, Tao S, Liu W. Hydrogel-Assisted Robust Supraparticles Evolved from Droplet Evaporation. ACS NANO 2024; 18:35684-35695. [PMID: 39699271 DOI: 10.1021/acsnano.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Supraparticles, formed through the self-assembly of nanoparticles, are promising contenders in catalysis, sensing, and drug delivery due to their exceptional specific surface area and porosity. However, their mechanical resilience, especially in dimensions spanning micrometers and beyond, is challenged by the inherently weak interactions among their constituent building blocks, significantly constraining their broad applicability. Here, we have exploited a robust supraparticle fabrication strategy by integrating hydrogel components into the assembly system and evaporating on the superamphiphobic surface. The resultant SiO2/SA (sodium alginate) supraparticles, achieved by evaporating a 15% volume fraction dispersion of SiO2 nanoparticles containing 18.46 mg/mL of sodium alginate and subsequently cross-linking with Ca2+, demonstrate mechanical robustness with a fracture force of 6.04 N, representing a mechanical strength enhancement of 60 times higher than that prior to the incorporation of the hydrogel component. The supraparticles maintain their original morphology after 30 min of ultrasonic treatment (200 W), demonstrating mechanical stability. This method exhibits generalizability, enabling the customization of supraparticles with various building blocks and hydrogel backbone materials. Based on such a methodology, we have synthesized enzyme-carrying supraparticles, further expanding the potential applications in intricate cascade reactions. The encapsulated glucose oxidase and horseradish peroxidase maintained their inherent reactivity, and such hydrogel-assisted robust supraparticles exhibited exceptional performance in accurate glucose assays, indicating great practical application in biocatalysis.
Collapse
Affiliation(s)
- Xiaojing Wang
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yiming Xu
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Dalian 116034, China
| | - Shengyang Tao
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Wendong Liu
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
3
|
Septiani EL, Ogi T. Advances in Aerosol Nanostructuring: Functions and Control of Next-Generation Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26789-26799. [PMID: 39546762 DOI: 10.1021/acs.langmuir.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nanostructured particles (NSPs), with their remarkable properties at the nanoscale, possess key functions required for unlocking a sustainable future. Fabricating these particles using aerosol methods and spraying processes enables precise control over the particle morphology, structure, composition, and crystallinity during in-flight transformation. In this Perspective, the significant impact of NSPs on technological advancement for energy and environmental applications is discussed. Furthermore, incorporating in situ/operando assessment techniques alongside machine and deep learning is explored. Finally, the future development trends and the perspective on the advancing NSPs synthesis via aerosol process are elaborated for further driving innovations for supersmart and carbon-neutral society.
Collapse
Affiliation(s)
- Eka Lutfi Septiani
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
4
|
Madubuko N, Sultan U, Carl S, Lehmann D, Zhou X, Soegaard A, Taccardi N, Apeleo Zubiri B, Wintzheimer S, Spiecker E, Haumann M, Vogel N, Wasserscheid P. Controlled Nanopore Sizes in Supraparticle Supports for Enhanced Propane Dehydrogenation with GaPt SCALMS Catalysts. ACS APPLIED NANO MATERIALS 2024; 7:24356-24367. [PMID: 39539809 PMCID: PMC11555637 DOI: 10.1021/acsanm.4c03577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
The efficient immobilization of GaPt liquid metal alloy droplets onto tailored supports improves catalytic performance by preventing coalescence and subsequent loss of active surface area. Herein, we use tailored supraparticle (SP) supports with controlled nanopores to systematically study the influence of pore sizes on the catalytic stability of GaPt supported catalytically active liquid metal solution (SCALMS) in propane dehydrogenation (PDH). Initially, GaPt droplets were prepared via an atom-efficient and scalable ultrasonication method with recycling loops to yield droplets <300 nm. Subsequently, these droplets were immobilized onto SiO2-based SPs with controlled pore sizes ranging from 45 to 320 nm. Catalytic evaluations in PDH revealed that GaPt immobilized on SPs with larger pores demonstrated superior stability over 15 h time-on-stream evidenced by reduced deactivation rates from 0.046 to 0.026 h-1. Nanocomputed tomography and identical location SEM confirmed the successful immobilization of GaPt droplets within the interstitial sites formed by the primary particles constituting the SPs. These remained unchanged before and after the catalytic reaction, demonstrating efficient coalescence prevention. Our findings underscore the importance of support pore size engineering for improving the stability of GaPt SCALMS catalysts and highlight, particularly, the high potential of using SPs in this context.
Collapse
Affiliation(s)
- Nnamdi Madubuko
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Umair Sultan
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Simon Carl
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Daniel Lehmann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Xin Zhou
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Alexander Soegaard
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Nicola Taccardi
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Susanne Wintzheimer
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Fraunhofer-Institute
for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Erdmann Spiecker
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Department
of Chemistry, Research Centre for Synthesis and Catalysis, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, 2092, South Africa
| | - Nicolas Vogel
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Peter Wasserscheid
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Institute for a Sustainable
Hydrogen Economy (INW), 52428 Jülich, Germany
| |
Collapse
|
5
|
Naveenkumar PM, Roemling LJ, Sultan U, Vogel N. Fabrication of Spherical Colloidal Supraparticles via Membrane Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22245-22255. [PMID: 39383325 DOI: 10.1021/acs.langmuir.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Colloidal supraparticles are micrometer-scale assemblies of primary particles. These supraparticles have potential application in photonic materials, catalysis, gas adsorption, and drug delivery. Thus, the synthesis of colloidal supraparticles with a narrow size distribution and high yield has become essential. Here, we demonstrate membrane emulsification as a high-throughput approach for fabricating spherical supraparticles with a narrow size distribution and control over particle size and crystallinity. Spherical supraparticles with well-ordered surface structures are synthesized by generating emulsion droplets of an aqueous colloidal dispersion in fluorocarbon oil using a Shirasu porous glass membrane followed by the consolidation of particles through water removal within the emulsion. We systematically investigate process parameters, including the flow rate of the particle dispersion, the particle concentration, and the average pore diameter of the membrane, on the mean size and size distribution of the supraparticles, revealing key factors governing supraparticle properties and production throughput. A comparative evaluation with commonly employed methods highlights the advantage of membrane emulsification, which combines well-defined internal structure and controlled supraparticle sizes with comparably high yields on the order of tens of grams per day. Importantly, in contrast to widely used droplet-based microfluidics, membrane emulsification allows fabrication of supraparticles in nonfluorinated oil. Overall, membrane emulsification offers a simple yet versatile method for fabricating colloidal supraparticles with high quality and yield and may serve as a bridge between existing high-precision techniques, such as droplet-based microfluidics, and high-throughput processes with less control, such as spray-drying.
Collapse
Affiliation(s)
- Parinamipura M Naveenkumar
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Umair Sultan
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Kämäräinen T, Nakayama Y, Uchiyama H, Tozuka Y, Kadota K. Amyloid Nanofibril-Assisted Spray Drying of Crumpled Supraparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309645. [PMID: 38716922 DOI: 10.1002/smll.202309645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/19/2024] [Indexed: 10/04/2024]
Abstract
Nanofibrils are known to improve the cohesion of supraparticle (SP) assemblies. However, tailoring the morphology of SPs using nanofibrillar additives is not well developed. Herein, β-lactoglobulin amyloid nanofibrils (ANFs) are investigated as means to impart morphological control over the assembly process of spray-dried SPs composed of 10-100 nm silica nanoparticles (SiNPs). Phytoglycogen (PG) and silver nanowires (AgNWs) are used to assess the influence of building block softness and aspect ratio, respectively. The results demonstrate that ANFs promote the onset of structural arrest during the particle consolidation enabling the preparation of corrugated SP morphologies. The critical ANF loading required to induce SP corrugation increases by roughly 1 vol% for every 10-nm increase in SiNP diameter, while the ensuing ANF network density decreases with SiNP volume fraction and increases with SiNP diameter. Results imply that ANF length starts to become influential when it approaches the SiNP diameter. ANFs display a reduced effectiveness in altering soft PG SP morphology compared with hard SiNPs of comparable size. In SiNP-AgNW SPs, ANFs induce a toroid-to-corrugated morphology transformation for sufficiently large SPs and small SiNPs. The results illustrate that ANFs are effective additives for the morphological engineering of spray-dried SPs important for numerous applications.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuzuki Nakayama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
7
|
Groppe P, Reichstein J, Carl S, Cuadrado Collados C, Niebuur BJ, Zhang K, Apeleo Zubiri B, Libuda J, Kraus T, Retzer T, Thommes M, Spiecker E, Wintzheimer S, Mandel K. Catalyst Supraparticles: Tuning the Structure of Spray-Dried Pt/SiO 2 Supraparticles via Salt-Based Colloidal Manipulation to Control their Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310813. [PMID: 38700050 DOI: 10.1002/smll.202310813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.
Collapse
Affiliation(s)
- Philipp Groppe
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jakob Reichstein
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Simon Carl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Carlos Cuadrado Collados
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Bart-Jan Niebuur
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kailun Zhang
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
| | - Tanja Retzer
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
8
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
9
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
10
|
Monfared V, Ramakrishna S, Nasajpour-Esfahani N, Toghraie D, Hekmatifar M, Rahmati S. Science and Technology of Additive Manufacturing Progress: Processes, Materials, and Applications. METALS AND MATERIALS INTERNATIONAL 2023:1-29. [PMID: 37359738 PMCID: PMC10238782 DOI: 10.1007/s12540-023-01467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
As a special review article, several significant and applied results in 3D printing and additive manufacturing (AM) science and technology are reviewed and studied. Which, the reviewed research works were published in 2020. Then, we would have another review article for 2021 and 2022. The main purpose is to collect new and applied research results as a useful package for researchers. Nowadays, AM is an extremely discussed topic and subject in scientific and industrial societies, as well as a new vision of the unknown modern world. Also, the future of AM materials is toward fundamental changes. Which, AM would be an ongoing new industrial revolution in the digital world. With parallel methods and similar technologies, considerable developments have been made in 4D in recent years. AM as a tool is related to the 4th industrial revolution. So, AM and 3D printing are moving towards the fifth industrial revolution. In addition, a study on AM is vital for generating the next developments, which are beneficial for human beings and life. Thus, this article presents the brief, updated, and applied methods and results published in 2020. Graphical Abstract
Collapse
Affiliation(s)
- Vahid Monfared
- Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117574 Singapore
| | | | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Maboud Hekmatifar
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Sadegh Rahmati
- Department of Medical Science and Technology, IAU University, Central Branch, Tehran, Iran
| |
Collapse
|
11
|
Zhang K, Schötz S, Reichstein J, Groppe P, Stockinger N, Wintzheimer S, Mandel K, Libuda J, Retzer T. Supraparticles for naked-eye H 2 indication and monitoring: Improving performance by variation of the catalyst nanoparticles. J Chem Phys 2023; 158:134722. [PMID: 37031150 DOI: 10.1063/5.0135130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Abstract
The recent transition to H2-based energy storage demands reliable H2 sensors that allow for easy, fast, and reliable detection of leaks. Conventional H2 detectors are based on the changes of physical properties of H2 probes induced by subsurface H-atoms to a material such as electrical conductivity. Herein, we report on highly reactive gasochromic H2 detectors based on the adsorption of H2 on the material surface. We prepared supraparticles (SPs) containing different types of noble metal nanoparticles (NPs), silica NPs, and the dye resazurin by spray-drying and tested their performance for H2 detection. The material undergoes a distinct color change due to the hydrogenation of the purple resazurin to pink resorufin and, finally, colorless hydroresorufin. The stepwise transition is fast and visible to the naked eye. To further improve the performance of the sensor, we tested the reactivity of SPs with different catalytically active NPs by means of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We show that the choice of the NP catalyst has a pronounced effect on the response of the H2 indicator. In addition, we demonstrate that the performance depends on the size of the NPs. These effects are attributed to the availability of reactive H-atoms on the NP surface. Among the materials studied, Pt-containing SPs gave the best results for H2 detection.
Collapse
Affiliation(s)
- Kailun Zhang
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Simon Schötz
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jakob Reichstein
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Philipp Groppe
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Nina Stockinger
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tanja Retzer
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Sultan U, Götz A, Schlumberger C, Drobek D, Bleyer G, Walter T, Löwer E, Peuker UA, Thommes M, Spiecker E, Apeleo Zubiri B, Inayat A, Vogel N. From Meso to Macro: Controlling Hierarchical Porosity in Supraparticle Powders. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300241. [PMID: 36932894 DOI: 10.1002/smll.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.
Collapse
Affiliation(s)
- Umair Sultan
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Alexander Götz
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Carola Schlumberger
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Teresa Walter
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Erik Löwer
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Urs Alexander Peuker
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Alexandra Inayat
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
13
|
Control of Crystallization of PBT-PC Blends by Anisotropic SiO2 and GeO2 Glass Flakes. Polymers (Basel) 2022; 14:polym14214555. [DOI: 10.3390/polym14214555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polymer composites and blend systems are of increasing importance, due to the combination of unique and different material properties. Blending polybutylene terephtalate (PBT) with polycarbonate (PC) has been the focus of attention for some time in order to combine thermo-chemical with mechanical resistance. The right compounding of the two polymers is a particular challenge, since phase boundaries between PBT and PC lead to coalescence during melting, and thus to unwanted segregation within the composite material. Amorphization of the semi-crystalline PBT would significantly improve the blending of the two polymers, which is why specific miscibility aids are needed for this purpose. Recent research has focused on the functionalization of polymers with shape-anisotropic glass particles. The advantage of those results from their two-dimensional shape, which not only improves the mechanical properties but are also suspected to act as miscibility aids, as they could catalyze transesterification or act as crystallization modifier. This work presents a process route for the production of PBT-PC blends via co-comminution and an in-situ additivation of the polymer blend particles with anisotropic glass flakes to adjust the crystallinity and therefore enhance the miscibility of the polymers.
Collapse
|
14
|
Müssig S, Reichstein J, Miller F, Mandel K. Colorful Luminescent Magnetic Supraparticles: Expanding the Applicability, Information Capacity, and Security of Micrometer-Scaled Identification Taggants by Dual-Spectral Encoding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107511. [PMID: 35146912 DOI: 10.1002/smll.202107511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
(Sub)micrometer-scaled identification (ID) taggants enable direct identification of arbitrary goods, thereby opening up application fields based on the possibility of tracking, tracing, and anti-counterfeiting. Due to their small dimensions, these taggants can equip in principle even the smallest subcomponents or raw materials with information. To achieve the demanded applicability, the mostly used optically encoded ID taggants must be further improved. Here, micrometer-scaled supraparticles with spectrally encoded luminescent and magnetically encoded signal characteristics are reported. They are produced in a readily customizable bottom-up fabrication procedure that enables precise adjustment of luminescent and magnetic properties on multiple hierarchy levels. The incorporation of commonly used magnetic nanoparticles and fluorescent dyes, respectively, into polymer nanocomposite particles, establishes a convenient toolbox of magnetic and luminescent building blocks. The subsequent assembly of selected building blocks in the desired ratios into supraparticles grants for all the flexibility to freely adjust both signal characteristics. The obtained spectrally resolved visible luminescent and invisible magnetic ID signatures are complementary in nature, thus expanding applicability and information security compared to recently reported optical- or magnetic-encoded taggants. Additionally, the introduced ID taggant supraparticles can significantly enhance the coding capacity. Therefore, the introduced supraparticles are considered as next-generation ID taggants.
Collapse
Affiliation(s)
- Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Franziska Miller
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
15
|
Huang L, Shen S, Zhong Y, Zhang Y, Zhang L, Wang X, Xia X, Tong X, Zhou J, Tu J. Multifunctional Hyphae Carbon Powering Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107415. [PMID: 34741475 DOI: 10.1002/adma.202107415] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Biotechnology can bring new breakthroughs on design and fabrication of energy materials and devices. In this work, a novel and facile biological self-assembly technology to fabricate multifunctional Rhizopus hyphae carbon fiber (RHCF) and its derivatives on a large scale for electrochemical energy storage is proposed. Crosslinked hollow carbon fibers are successfully prepared by conversion of Rhizopus hyphae, and macroscopic production of centimeter-level carbon balls consisting of hollow RHCFs is further realized. Moreover, the self-assembled RHCF balls show strong adsorption characteristics on metal ions and can be converted into a series of derivatives such as RHCF/metal oxides. Notably, the designed RHCF derivatives are demonstrated with powerful multifunctionability as cathode, anode, and separator for lithium-sulfur batteries (LSBs). The RHCF can act as the host material to combine with metal oxide (CoO) and S, Li metal, and a polypropylene (PP) separator to form a new RHCF/CoO-S cathode, an RHCF/Li anode, and an RHCF/PP separator, respectively. Consequently, the optimized LSB full cell presents excellent cycling performance and superior high-rate capacity (881.3 mA h g-1 at 1 C). This work provides a new method for large-scale preparation of hollow carbon fibers and derivatives for advanced energy storage and conversion.
Collapse
Affiliation(s)
- Lei Huang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shenghui Shen
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Zhong
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yongqi Zhang
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Huzhou, 313000, China
| | - Lingjie Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinhui Xia
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xili Tong
- State Key Laboratory of Coal Conversation, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
16
|
Wang J, Kang E, Sultan U, Merle B, Inayat A, Graczykowski B, Fytas G, Vogel N. Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:23445-23456. [PMID: 34737841 PMCID: PMC8558861 DOI: 10.1021/acs.jpcc.1c06839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.
Collapse
Affiliation(s)
- Junwei Wang
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Umair Sultan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials
Science and Engineering I and Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexandra Inayat
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- E-mail:
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- E-mail:
| |
Collapse
|
17
|
Wang J, Schwenger J, Ströbel A, Feldner P, Herre P, Romeis S, Peukert W, Merle B, Vogel N. Mechanics of colloidal supraparticles under compression. SCIENCE ADVANCES 2021; 7:eabj0954. [PMID: 34644116 PMCID: PMC11095630 DOI: 10.1126/sciadv.abj0954] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 05/16/2023]
Abstract
Colloidal supraparticles are finite, spherical assemblies of many primary particles. To take advantage of their emergent functionalities, such supraparticles must retain their structural integrity. Here, we investigate their size-dependent mechanical properties via nanoindentation. We find that the deformation resistance inversely scales with the primary particle diameter, while the work of deformation is dependent on the supraparticle diameter. We adopt the Griffith theory to such particulate systems to provide a predictive scaling to relate the fracture stress to the geometry of supraparticles. The interplay between primary particle material and cohesive interparticle forces dictates the mechanical properties of supraparticles. We find that enhanced stability, associated with ductile fracture, can be achieved if supraparticles are engineered to dissipate more energy via deformation of primary particles than breaking of interparticle bonds. Our work provides a coherent framework to analyze, predict, and design the mechanical properties of colloidal supraparticles.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Schwenger
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Ströbel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Feldner
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Herre
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Romeis
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Canziani H, Bever F, Sommereyns A, Schmidt M, Vogel N. Roughly Spherical: Tailored PMMA-SiO 2 Composite Supraparticles with Optimized Powder Flowability for Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25334-25345. [PMID: 34019394 DOI: 10.1021/acsami.1c02264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Particulate materials with well-engineered properties are of key importance for many aspects in our daily life. Polymer powders with high flowability, for example, play a crucial role in the emerging field of powder-based additive manufacturing processes. However, the polymer- and composite material selection for these technologies is still limited. Here, we demonstrate the design of spherical polymethyl methacrylate (PMMA) and PMMA-SiO2 composite supraparticle powders with excellent powder flowability and tailored composition for powder-based additive manufacturing. Our process assembles these powders from the bottom up and affords a precise control over surface roughness and internal morphology via the choice of colloidal primary particles. We establish process-structure-property relationships connecting external spray-drying parameters and primary particle sizes with the resulting supraparticle roughness and, subsequently, with the macroscopic powder flowability and powder bed density. In a second step, we demonstrate the control of composition and internal morphology of PMMA-SiO2 composite supraparticles based on different mass mixings and diameter ratios of the two primary particle dispersions. Finally, we successfully apply the prepared supraparticle powders in powder bed additive manufacturing. The optimized flowability of the composite powders allows the production of two-layered square specimens with fusion between the individual layers and a uniform and tunable distribution of nanoscale SiO2 additives without requiring the addition of any flowing aids.
Collapse
Affiliation(s)
- Herbert Canziani
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 4, Erlangen 91058, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Haberstrasse 9a, Erlangen 91058, Germany
| | - Frederik Bever
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Alexander Sommereyns
- Institute of Photonic Technologies, Friedrich-Alexander University Erlangen-Nuremberg, Konrad-Zuse-Strasse 3-5, Erlangen 91052, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Strasse 6, Erlangen 91052, Germany
| | - Michael Schmidt
- Institute of Photonic Technologies, Friedrich-Alexander University Erlangen-Nuremberg, Konrad-Zuse-Strasse 3-5, Erlangen 91052, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Strasse 6, Erlangen 91052, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 4, Erlangen 91058, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Haberstrasse 9a, Erlangen 91058, Germany
| |
Collapse
|
19
|
Kim J, Shim W, Jo SM, Wooh S. Evaporation driven synthesis of supraparticles on liquid repellent surfaces. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|