1
|
Liu S, Chen Z, Liu Y, Wu L, Wang B, Wang Z, Wu B, Zhang X, Zhang J, Chen M, Huang H, Ye J, Chu PK, Yu XF, Polavarapu L, Hoye RLZ, Gao F, Zhao H. Data-Driven Controlled Synthesis of Oriented Quasi-Spherical CsPbBr 3 Perovskite Materials. Angew Chem Int Ed Engl 2024; 63:e202319480. [PMID: 38317379 DOI: 10.1002/anie.202319480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Controlled synthesis of lead-halide perovskite crystals is challenging yet attractive because of the pivotal role played by the crystal structure and growth conditions in regulating their properties. This study introduces data-driven strategies for the controlled synthesis of oriented quasi-spherical CsPbBr3, alongside an investigation into the synthesis mechanism. High-throughput rapid characterization of absorption spectra and color under ultraviolet illumination was conducted using 23 possible ligands for the synthesis of CsPbBr3 crystals. The links between the absorption spectra slope (difference in the absorbance at 400 nm and 450 nm divided by a wavelength interval of 50 nm) and crystal size were determined through statistical analysis of more than 100 related publications. Big data analysis and machine learning were employed to investigate a total of 688 absorption spectra and 652 color values, revealing correlations between synthesis parameters and properties. Ex situ characterization confirmed successful synthesis of oriented quasi-spherical CsPbBr3 perovskites using polyvinylpyrrolidone and Acacia. Density functional theory calculations highlighted strong adsorption of Acacia on the (110) facet of CsPbBr3. Optical properties of the oriented quasi-spherical perovskites prepared with these data-driven strategies were significantly improved. This study demonstrates that data-driven controlled synthesis facilitates morphology-controlled perovskites with excellent optical properties.
Collapse
Affiliation(s)
- Shaohui Liu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Zijian Chen
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
- Department of Chemical and Environmental Engineering, the University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Yingming Liu
- Centre for Photonics Information and Energy Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Lingjun Wu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Boyuan Wang
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Zixuan Wang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Bobin Wu
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Xinyu Zhang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Wenzhou Institute of Technology, Digital Intelligent Manufacturing Research Center, Wenzhou, 325000, PR China
| | - Jie Zhang
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215000, PR China
| | - Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hao Huang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Junzhi Ye
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Lakshminarayana Polavarapu
- CINBIO, Materials Chemistry and Physics Group, University of Vigo, Campus Universitario Marcosende, Vigo, 36310, Spain
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Haitao Zhao
- Center for Intelligent and Biomimetic Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| |
Collapse
|
2
|
Zhao Z, Li H, Gao X. Microwave Encounters Ionic Liquid: Synergistic Mechanism, Synthesis and Emerging Applications. Chem Rev 2024; 124:2651-2698. [PMID: 38157216 DOI: 10.1021/acs.chemrev.3c00794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Progress in microwave (MW) energy application technology has stimulated remarkable advances in manufacturing and high-quality applications of ionic liquids (ILs) that are generally used as novel media in chemical engineering. This Review focuses on an emerging technology via the combination of MW energy and the usage of ILs, termed microwave-assisted ionic liquid (MAIL) technology. In comparison to conventional routes that rely on heat transfer through media, the contactless and unique MW heating exploits the electromagnetic wave-ions interactions to deliver energy to IL molecules, accelerating the process of material synthesis, catalytic reactions, and so on. In addition to the inherent advantages of ILs, including outstanding solubility, and well-tuned thermophysical properties, MAIL technology has exhibited great potential in process intensification to meet the requirement of efficient, economic chemical production. Here we start with an introduction to principles of MW heating, highlighting fundamental mechanisms of MW induced process intensification based on ILs. Next, the synergies of MW energy and ILs employed in materials synthesis, as well as their merits, are documented. The emerging applications of MAIL technologies are summarized in the next sections, involving tumor therapy, organic catalysis, separations, and bioconversions. Finally, the current challenges and future opportunities of this emerging technology are discussed.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hong Li
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xin Gao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Wang L, Saji SE, Wu L, Wang Z, Chen Z, Du Y, Yu XF, Zhao H, Yin Z. Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201642. [PMID: 35843870 DOI: 10.1002/smll.202201642] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The development of advanced electronic devices is boosting many aspects of modern technology and industry. The ever-increasing demand for advanced electrical devices and integrated circuits calls for the design of novel materials, with superior properties for the improvement of working performance. In this review, a detailed overview of the synthesis strategies of 2D metal organic frameworks (MOFs) acquiring growing attention is presented, as a basis for expansion of novel key materials in electrical devices and integrated circuits. A framework of controllable synthesis routes to be implanted in the synthesis strategies of 2D materials and MOFs is described. In short, the synthesis methods of 2D MOFs are summarized and discussed in depth followed by the illustrations of promising applications relating to various electrical devices and integrated circuits. It is concluded by outlining how 2D MOFs can be synthesized in a simpler, highly efficient, low-cost, and more environmentally friendly way which can open up their applicable opportunities as key materials in advanced electrical devices and integrated circuits, enabling their use in broad aspects of the society.
Collapse
Affiliation(s)
- Linjuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Sandra Elizabeth Saji
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| | - Lingjun Wu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zixuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zijian Chen
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
5
|
Cao P, Zhao H, Adegbite S, Lester E, Wu T. Vacuum-freeze drying assisted for the fabrication of a Nickel-Aluminium catalyst and its effects on the structure-reactivity in the catalytic dry reforming of methane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pengfei Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Stephen Adegbite
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Edward Lester
- Department of Chemical and Environmental Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Tao Wu
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
6
|
Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction. Nat Commun 2021; 12:5676. [PMID: 34584105 PMCID: PMC8479065 DOI: 10.1038/s41467-021-26025-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
The poor catalyst stability in acidic oxidation evolution reaction (OER) has been a long-time issue. Herein, we introduce electron-deficient metal on semiconducting metal oxides-consisting of Ir (Rh, Au, Ru)-MoO3 embedded by graphitic carbon layers (IMO) using an electrospinning method. We systematically investigate IMO’s structure, electron transfer behaviors, and OER catalytic performance by combining experimental and theoretical studies. Remarkably, IMO with an electron-deficient metal surface (Irx+; x > 4) exhibit a low overpotential of only ~156 mV at 10 mA cm−2 and excellent durability in acidic media due to the high oxidation state of metal on MoO3. Furthermore, the proton dissociation pathway is suggested via surface oxygen serving as proton acceptors. This study suggests high stability with high catalytic performance in these materials by creating electron-deficient surfaces and provides a general, unique strategy for guiding the design of other metal-semiconductor nanocatalysts. The poor catalyst stability for oxygen evolution in acidic media has been a long-time issue. Here, authors demonstrate iridium on MoO3 exhibits a low overpotential for oxygen evolution and excellent durability in acidic media due to the high oxidation state of iridium metal on MoO3.
Collapse
|